AD-A124 387 SHARED CACHE ORGANIZATION FOR MULTIPLE-STREAM COMPUTER 1/3
SYSTEMS(U) ILLINOIS UNIV AT URBANA COORDINATED SCIENCE
LAB C YEH JAN 81 R-904 NOO0O39-B0-C-0556

UNCLASSIFIED F/G 9/2. N

L .

[CF} 28‘ 2.5
22 £
— E m L
v oM 20

e -
= m 1.8
=

o

23 flis

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

JANUARY, 1981 | UNLU-ENe a1-2238

COORDINATED SCIENCE LABORATORY

L3

© FOR MULTIPLE-STREAM

WY g ; B SN b AR

p)

o

g

< o | | |

o SHARED CACHE ORGANIZATION
=l

<

=

e

P Y

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

1. REPORT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER

REPORT DOCUMENTATION PAGE BEF o o e o RM

D.A12¢ 357

TITLE (and Subtitle) 5. FFE OF REPORT & PERIOD COVERED

SHARED CACHE ORGANIZATION FOR MULTIPLE=-STREAM Technical Report

COMPUTER SYSTEMS
6. PERFORMING ORG. REPORT NUMBER

R-904; UILU-ENG 81-2235

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
N00039-80-C-0556
CHI-CHUNG YEH NO0O14-79-C-0424
9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT. PROJECT, TASK

Coordinated Science Laboratory AREA & WORK UNIT NUMBERS

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
VHSIC Systems, US Navy January, 1981
Joint Services Electronics Program 13, NUMBER OF PAGES

260

T4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)

R e e T YT ra T 7YY TV
16. DISTRIBUTION STATEMENT (of this Report)

UNCLASSIFIED

T5a, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

Approved for public release; distribution unlimited

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it diffe. :.t from Repart)

. SUPPLEMENTARY NOTES

19.

KEY WORDS (Continue on reverse side if necessary and identily by block number)

Cache memories, parallel memories, pipeline processors,
parallel processors, multiprocessors, memory interference,
performance evaluation, simalation

20.

ABSTRACT (Continue on reverse side If necesaary and identifly by block number)

~/ Organizations of shared two-level memory hierarchies for parallel-
pipelined multiple instruction stream processors are studied. The
multicopy of data problems are totally eliminated by sharing the caches.
All memory modules are assumed to be identical and cache addresses are
interleaved by sets. For a parallel-pipelined processor of order (s,p),
which consists ofep parallel processors each of which is a pipelined
processor with degree of multiprogramming, s, there can be up to sp cache

DD , v, 1473

SECURITY CLASSIFICATION OF THIS PAGE ‘When Dete F.':tuod)

B e e

SECURITY CLASSIFICATION OF TH)S PAGE(When Date Entered)

20. ABSTRACT (continued)

.requests from distinct instruction streams in each instruction cycle.
The cache memory interference and shared cache hit ratio in such systems
are investigated.

The study shows that the set associative mapping mechanism, the
write through with buffering updating scheme and the no write allocation
block fetch strategy are suitable for shared cache systems. However, for
private cache systems, the write back with buffereing updating scheme and
the write allocation block fetch strategy are considered in this thesis.

Performance analysis is carried out by using discrete Markov Chain
and probability based theorems. Performance is evaluated as a function
of the hit ratio, h, the processor order, (s,p), and the cache organization
characterized by the number of lines, £, the number of modules per line, m,
cache cycle time, c, and the block transfer time, T. Results shows that
for reasonably large £ high performance can be obtained for shared cache
with small (1-h)T. Shared-cache systems may perform better than private-
cache systems if shared cache results in a higher hit ratio than private
cache. The shared-cache memory organization is suitable for single pipelined
processor systems because of the low access interference. Access inter-
ference of shared cache systems may be reduced to extremely low levels with
a reasonable choice of system parameters.

.Some design tradeoffs are discussed and examples are given to
illustrate a wide variety of design options that can be obtained.
Performance differences due to alternative architectures are also shown
by a performance comparison between shared cache and private cache for a
wide range of parameters.

-

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

e e e O

ot

e,

o et e

e O WA
1

e

SHARED CACHE ORGANIZATION FOR MULTIPLE~STREAM

COMPUTER SYSTEMS

! Accession For

NTISg GRA&I

DTIC T4iB

Unannouner 4

- Ju:tificaticn-
~—~__..__‘_ e —— I

/DDI!

TTT—

By

- h
Chi~-Chung Ye _Distrihutsen,

Availabiis]
B. Eng., Chung Yuan Christian College of [—— vl‘ty C°de§
Avail wnisop

Science and Engineering, 1972 Dist i

M,S., Northwestern University, 1975 Special
M.S., University of Illinois, 1977

-')r‘:(_. \

" ey ¥

Nep, v :

THESIS e,

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1981

Urbana, Illinois

L vy gyt e
S S oV T e 30 W T e R

SHARED CACHE ORGANIZATIONS FOR MULTIPLE~STREAM
COMPUTER SYSTEMS

Chi-Chung Yeh, Ph.D. |
Department of Electrical Engineering
University of Illinois at Urbana-Champaign, 1981

Organizations of shared two-level memory hierarchies for parallel -

pipelined multiple instruction stream processors are studied. The
multicopy of data problems are totally eliminated by sharing the caches.
All memory modules are assumed to be identical and cache addresses are
interleaved by sets. For a parallel - pipelined processor of order
(s,p), which consists of p parallel processors each of which is a
pipelined processor with degree of multiprogramming, s, there can be up
to sp cache requests from distinet instruction streams in each
instruction cycle. The cache memory interference and shared cache hit

ratio in such systems arc¢ investigated.

The study shows that the set associative mapping mechanism, the

write through with buffering updating scheme and the no write alldcation ﬂ
= f block fetch strategy are suitable for shared cache systems. However, for

private cache systems, the write back with buffering updating scheme and

the write allocation block fetch strategy are considered in this thesis.

r_: Cmm ~~“”3==—-—-—-——————_______m“

Performance analysis is carried out by using discrete Markov Chain

and probability based theorems. Performance is evaluated as a function
of the hit ratio, h, the processor order, (s,p), and the cache
organization characterized by the number of lines, £ , the number of
. modules per line, m, cache cycle time, ¢, and the block transfer time, T.

- Results shows that for reasonably large ¢ high performance can be

obtained for shared cache with small (1-h)T. Shared-cache systems may
perform better than private-cache systems if shared cache results in a

higher hit ratio than private cache. The shared-cache memory

organization is suitable for single pipelined processor systems because
of the 1low access interference. Access interference of shared cache
systems may be reduced to extremely low levels with a reasonable choice

of system parameters.

Some design tradeoffs are discussed and examples are given to
. illustrate a wide variety of design options that can be obtained.

.- Performance differences due to alternative architectures are also shown

by a performance comparison between shared cache and private cache for a

wide range of parametefs.

ACKNOWLEDGMENT

The author wishes to express his deepest gratitude to his advisors,
Proressor' Edward S. Davidson and Professor Janak H. Patel, for their
patient guidance, helpful suggestions and invaluable friendship. The
author would also like to thank Professors B. R. Rau, J. A. Abraham

and M. Schlansker for their constructive discussions.

The author also wishes to thank his colleagues at the Coordinated
Science Laboratory; Joel Emer, Alan Gant, Larry Hanes, David Yen, Tim

Chou and Andy Pleszkun, for providing ‘an intellectually stimulating

environment.

Finally, the author is grateful to his wife, Grace, for her love and

encouragement .

iv

TABLE OF CONTENTS
Page
BACKGROUND AND MOTIVATION......cv0etvensncrosnscnansnocncsns 1
1.1 Introduction........c.iuritinercercinenonnneanonasonnnans 1
1.2 Processor Organization..........ceevevvennennoennenanns 4
1.3 Program Behavior and Memory Hierarchies................ 10
1.4 cCharacteristics of Cache Memory Devices........c....... 15
1.5 oObjectives of This Research..........cciiiivirernnnaans 26
1.6 Some Related WOrK........oiieureninroerenenesanenennnnns . 29
1.7 Overview of the Dissertation..............ciiivvinnnans 35
SHARED CACHE MEMORY ORGANIZATION.ctervveccnivnnscnnannons 36
2.1 Introduction........icviivenieiatitoiiaceeitieaeneeaa. 36
2.2 Cache Memory Mapping Mechanisms...............c.e...0... 38
2.2.1 Fully Associative Mapping......evocecevcencennnan 39
2.2.2 Direct MappiBRg......vvovrvrninrnoanianasonnnnnas 42
2.2.3 Sector Mapping............ceituninns Ceeeerienaa. 44
2.2.4 Set Associative Mapping.................... e 45
2.3 Management of Cache=MiS8S8..........oivinnrennranannnnn. 47
2.3.1 Replacement Strategies...........coiiveuivunnnnss 48
2.3.2 Cache Block Fetch and Handling of Write-Miss... 50
2.4 L-M Cache Memory Configuration............. Cecetecanaas 56
2.5 Address Interleaving......evoivitveeeresnnsonnanosannnss 59
2.6 shared Cache Request Scheduling...ccovevveinenrennnenn. 66
2.7 System Configurations...........coieeveuernnncnccanenns 71
2.8 Concluding ReMATrKS.....coivvriurecnerenensneennsennanns 83
PERFORMANCE ANALYSIS. et tvuveosesntonssonanossssnssasonnes .o 85
3.1 IntroduCtion.i.coerererrirroeerestoaoacecossencaranenns 85
3.2 ghared Cache Memory with an Implicit Lookup Table...... 90
3.2.1 Discrete Markov Model...... Cieresasanees vetnrans 91
3.2.2 Probabilistic Model...........iitiieinennennnnnn 108
3.2.3 Bounds on P, (CyTyP)ecrtrcconiostcacasnsscnsacans 119
3.3 Shared Cache Memory with Explicit Lookup Tables........ 124
3.3.1 Discrete Markov Model...... Creeresttiieensasaans 126
3.3.2 Probabilistic Model.........vce0cvne ceeceesasanae 135
3.3.3 Dynamic Hit Ratio......ccovvnerencnnnnnennanenn 142
3.4 Private Cache Memories...........o0uvenes chiereeans veuns 144
3.5 Concluding Remarks.........coeveeess Ceesetiasaconoes v 153
ANALYSIS OF RESULTS . s sscscuvossssecsonscanesosasnansosnanasssse 155
4.1 Introduction...... Cecrseereseranreanas Cesaeieas Cecaaaans 155

The Effects of Block Size, Set Size and Total Cache
Capacity on Miss Ratios...
4.3 The Effect of Qperation Environment and Write Policy
on Miss Ratio
4.4 Validation of the Models.
4.5 Effect of the Number of Cache Modules (N) on Performance
4.6 Effect of the Number of Lines (L) on Performance.
4.7 Effect of Cycle Characteristics on Performance.
4.8 Effect of the Number of Processors (p) omn Performance...
4.9 Effect of Processor Speed on Performance
4.10 Effect of Miss Penalties on Performance.
4.11 Load Through versus Nonload-Through....
4.12 Comparisons Between Shared Cache and Private Cache

CONCLUSIONS . . oveeeoscsssossccearanononssesansoscsssesecsssssas 244

5.1 Summary of ReSUltS...c..ceeurrrrvonerensnccsaaannanse oo 244
5.2 Suggestions for Further Research

APPENDIX A % ggmmary for Shared Cache with An Implicit Lookup
able...coserencacnns ceee

APPENDIX B A Summary for Shared Cache with Explicit Lookup
TableS..oevvenane et iceeeneaacteta s ace s enaceransan

LIST OF REFERENCES .

vITA'.IO.C....'...I.I‘

TR LT e | SN T WA T
Y

Fos=—

LIST OF TABLES
Page
4.3.1 The effect of simultaneous increasing both cache
capacity and number of streams on miss ratio........... 177
4$.4.1 The effect of cache access conflict on performance
for model A (set size = block size = 8)......cv0venevn 191
E 4.4.2 The effect of cache access conflict on performance }
for model B (set size = block size = 8).......c.cuu.en 192 é
4.4.3 Performance for private .cache systems (£ = N).......... 195 . :
i
1 ‘LIST OF FIGURES
1.2.1 A pipelined processor of order 4........cc0vvvueninnnn, 6
1.2.2 A single-stream, four-segment pipelined processor...... 6
1.2.3 A four-stream, four-segment pipelined processor........ 8
1.2.4 Configurations of parallel~pipelined processors........ 11
1.3.1 An H-level storage hierarchy............c.ccciiiannenn 14
1.4.1 Functional blocks of RAM chip...........c v, 17
1.4.2 Timing diagram for read cycle of RAM chip.............. 18
1.4.3 Timing diagram for write cycle of RAM chip............. 19 1
1.4.4 Functional blocks of CAM chips......c.coovvieevnrnnnnnn. 21 b
1.4.5 A l-bit CAM cell.......coviivennncnnns . ceraenn 22 E
1.4.6 AL X4 CAM MemOTY 8LFAY .- ..o tvveusanseasnsssnsonsaasans 24 g
1.5.1 Multiprocessor system with private—cache memories...... 27 %
2.2.1 Cache memory mapping mechanism: (a) fully associative E
mapping, (b) direct mapping, (c) sector mapping, and)
(d) set associative mapping.......ccciviiiniennnns teeen 40 {
2.4.1 L-M memory organization............. sbeeratectanastnaas 58 ;

2.4.2 Bus structures of the LM memory organization........ .s 60

i i o

et L] »

-

2.5.1

2.5.2

2.7.1
2.7.2
2.7.3
2.7.4(a)
2.7.4(b)

3.2.1.1

3.2.3.1

3.3.1.1

3.4.1.1

4.2.1

4.2.2

4.2.3

4.3.1

4.3.2

4.3.3

4.3.4(a)

4.3.4(b)

Address format for a set associative cache memory
organization.............. et ierans Crseesrreesaeensan

Address formats for two implementations of interleaving
by sets......ciiiieriniinenannnn. ettt eessseeas s

Shared cache system organization...... et teeateeaeacaeas
An implementation of the LRU algorithm.................
An implicit lookup'table implemented by CAM chips......
Shared cache with one explicit lookup table per line...

Shared cache with one explicit lookup table per cache
module.....coovinvvnaccnennnss et seas cheesessarseann

Line state diagram for shared cache with an implicit
lookup table and cycle characteristics (¢,T) = (3,10)..

Line state diagram for shared cache with an implicit
lookup table and m = 1.............. ftessssssssenesanas

Line state diagram for shared cache with explicit
lookup tables and cycle characteristics (¢,T) = (3,10).

Memory line state diagram for multiprocessor with

private-cache systems.............. crieresesnannes s
Effect of cache capacity on miss ratio...... P, oo
Effect of block size on miss ratio.....cvovvvvevoneannn
Effect of set size on miss ratio........... Ceetesaiiaae

The effects of write policies, space sharing and
operating environments on miss ratio for CCOBOL and
GAUSS .. v iverevsnverarsanns evecrsecsenet ettt sanconn

The effects of write policies and space sharing on miss
ratio for EIGEN and ECOBOL. ...t vereeinscoveocnesanss

Miss ratio comparisons between shared cache and private
cache for workload of mixed program traces.............

Hit ratio vs. time obtained from private cache for
EIGEN and GAUSS .. :cvivretscsceusosanssonsasssesasasanas

Hit ratio for shared cache and the average hit ratio
for figure 4.3.4(a) vs. time....c.ovvveincnencertnnannnn

63

63
73

76
79

81

82

103

123

132

149

164

166

168

171

172

176

180

181

' viii
i : 4.3.5(a) Hit ratio vs. time obtained from private cache for both
the first and second trace sections of EIGEN program
trace..oceesonssvncnnsss ceraseaans Cheseecersenesaneneanas 183
? 4.3.5(b) Hit ratio for shared cache and the average hit ratio for
f figure 4.3.5(a) vs. time.......c.cvcviivninn.. cecessenan 184
4.3.6(a) Hit ratio vs. time obtained from private cache for EIGEN
and CCOBOL..vstevsncsnannacsnocaanns ceeeneas cereseane .o 186
4.3.6(b) Hit ratio for shared cache and the average hit ratio for
figure 4.3.6(a) vs. time......ce0uu.nn Ceseenans cesarenen 187
4.5.1 Effect of Non Cu for / =4..........cv0un ceeesessarane 198
4.5.2 Effect of Non Cu for £ = 16..... 00t ereonncannnsnnsas 199
4.6.1 Effect of £ on Cu for N =64 and ¢ = 3....0000vuuen ceeen 202
4.6.2 Effect of # on Cu for N = 1024 and ¢ = 1......... ceenann 203

:4.7.1 The effect of Ton Cu for N =256 and ¢ = l....vevennns 207
4.7.2 The effect of con Cu for N=64 and T = 16......cc0... 208
4.7.3 Effect of (¢,T) on Cu for T/c = 8 and N = 256........... 209

4.8.1 Effect of pon Cu for N=256 and ¢ = l...cvveerinrennnn 211

4.8.2 Effect of pon pc for n = 256 and ¢ = 1l........ eeesaean 212
4.9.1 Effect of processor speed on performance for a comstant
request rate.......cccerinrtiennanan cerereans ceeeseasanas 215

4.9.2 Effect of processor speed on throughout for varying

TEQUESE FaALe...ccvruvsrrscoccrrononconrosnnossncnas ceea. 217
4.9.3 Effect of processor and memories speed omn throughout.... 218
4.,10.1 Effect of (1-h) on Cu for ¢/ = N = 256....0cc0avenns eesea. 220

4.11.1 Performance comparison between load through and nonload-
through for a fixed W = &4... .00t eieerescnccsaonnnscaass 226

4.11.2 Performance comparison between load through and nonload-
through for various W's and Bs's................... 227

4.12.1 Multiprocessor systems with nonpipelined processors for
(a) shared cache and (b) private cache..........cce0.v.. 230

4.12.2

4.12.3

4.12.4

4.12.5

4.12.6

4.12.7

4.12.8

r——

Performance comparison between shared cache and private
cache for nonpipelined multiprocessor svstems..........

Single pipelined processor systems for (a) shared cache
and (b) private cache................ tececesrreass cenen

Performance comparison between shared cache and private
cache for single pipelined processor with f/ = N and
8 F bttt et eaenan Ceteresaaeses

Performance comparison between shared cache and private
cache for single pipelined processor with L = 4 and

8 ® biuivieeriesarennns st reeseteranse Certeecsecsssessnsen

Single pipelined processor with time-multiplexed main
memory bus for (a) shared cache and (b) private cache..

Performance comparison between shared cache and private
cache for p= 1, s =4, £ = N and a single time-
multiplexed main memory bus........ Cebtesesaceseanacanns

Performance comparison between shared cache and private
cache for p =1, s = 4, £ = 4 and a single time-
multiplexed main memory bus.......... seeeevesseeranans

ix

232

233

236

237

239

241

242

e e ——

CHAPTER 1

BACKGROUND AND MOTIVATION

1.1 Introduction

Despite advances in modern computer design, there will always be a
need for machines more powerful than those currently available. Although
performance may be improved by increasing the switching speed of the
electronic components, to achieve even faster computation, we must also
take new approaches that do not depend on breakthroughs in device
technology, but rather oﬁ imaginative computer architecture design. Two
architectural techniques, parallel computing and pipelined computing [1],
can be employed to enhance the throughput of a computer system.
Parallelism in various forms has appeared in several computers and has
proved to be an effective approach to performance improvement. In some
highly parallel éomputer systems, like the C.omp system at
Carnegie-Mellon University [2] and the AMP-1 system at University of
Illinois (3], concurrency is achieved by a multiplicity of independent
processors which execute separate instruction streams on separate data
streams. This kind of system is referred to as Multiple Instruction
Stream - Multiple Data Stream (MIMD) [4]. On the other hand, some highly

parallel computer systems, like ILLIAC IV [S5], STARAN [6], and PEPE (7],

contain a large number of processors that perform the same computation on

a large collection of related data astreams simultaneously. These are

referred to as Single Instruction Stream - Multiple Data Stream (SIMD)

(41,

Pipelining is one form of imbedding parallelism or concurrency in a
computer system. A pipelined processor consists of several specialized
subprocessors called segments. Each segment performs a apecific part of
a particular computation and operates concurrently with other segments.
Instruction stream pipelining has been successfully implemented in many
computer systems, such as IBM 360/91 [8] and Amdahl 470 Vv/6 [9], to
overiap the instruction execution. Another form of pipelining is the
data stream pipelining which performs the same arithmetic operation in an
overlapped fashion on a series of operands as they flow through the pipe.
Examples of these are the vector processors: CDC STAR-100 [10], TI-ASC
{111, and CRAY-1 [i2]. Pipelined processors appear to have an attractive
architecture for multiprocessing systems in the near future because of
their inherent cost advantage [13,14], regular structure and high pin
utilization [15] which are very suitable for VLSI technologies. A
general model and formal description of such a highly concurrent

processor organization is presented in the next section.

Despite the significant progress in semiconductor technology now
oceurring, faster and larger storage will always be in demand. It has
generally been recognized that these demands cannot be fulfilled at an
acceptable cost with any single current technology, but this need can be

satisfied by a gemory hierarchy which cpmbines a variety of technologies

with differing cost-performance characteristics. Today, some memory

i o st

hierarchy is used in almost every modern computer system from
microcomputers to large scale supercomputers. In this research, a two
level cache-main memory hierarchy for a multiprocessor system is studied.
This research is not particularly concerned with main-secondary

hierarchies or uniprocessor systems.

In a tightly=-coupled multiprocessor environment, main memory is a
prime system resource which 1is usually shared by all the processors.
However, cache memory is generally not shared among processors. When
cache memory is used, a separate cache is usually attached to each
processor [16]. 1In such systems, interprocessor communications are
usually required since no processor can directly address another
processor’s cache memory. This kind of cache memory organization,
reférred to as private gcache, causes the well-known multicopy of data
problem (or goherence problem [17]) which means more than one
nonidentical and inconsistent copy of data exists in the system.
Generally speaking, a memory hierarchy has such a coherence problem as
soon as one of its levels is split into several independent units which

are not equally accessable from faster levels or processors.

In this thesis, a new solution is proposed which eliminates such
coherence problems by sharing the cache memories among all processors.
However, care must be taken in the organization of the ghared cache
memory system to avoid severe performance degradation due to gache memory
access interference caused by two or more processors simultaneously

attempting to access the same module or resoure of the shared cache

memory system. A simple way to reduce access interference is to divide

the shared cache memory system into several independent wmodules. Then
several cache requests would be able to access the cache memory
simultaneously if they all reference distinct modules. Interleaving of
the addresses among shared cache memory modules is then used to alleviate

the interference problem.

Memory hierarchy 1s a cost-effective approach to obtain a balance
between effective processor and storage cycles. The processor and cache
memory cycles and the data transfer rate between various memory levels
are all significant considerations for achieving balanced system design.
The data transfer rate is in turn tightly related to the cache memory
organization. The cache memory system is usually organized to meet the
cache memory bandwidth requirements of the system. The memory bandwidth
is the rats a¢t which memory can provide information and is wusually

measured as words per second.

In this research, we characterize a wide variety of shared-cache
mltiple-stream computer systems and describe a method for evaluating
their performance. Furthermore, the access interference problem, dynamic
space-sharing phenomena and various cache memory control mechanisms are

characterized and evaluated.

l.2 Processor Organization

The concept and advantages of pipelined processors have been

introduced in section 1.1. A general and detailed model which describes

- - AV RN AL oy) ' ,--—-—-U‘.

i \ a multiple instruction stream multiple data stream (MIMD) processor
implemented through pipelining is discussed in this section. A formal)
definition of the pipelined processor model used in this research is

given below.

Definition 1.2.1 A pipelined processor of order 3 is modeled as an

ordered set of s segments (31, S2s+++s Sg.1), each of which can

simultaneously be processing a distinct step or phase of a distinct

instruction. O

Once an instruction is initiated in the initial segment, it flows
from segment to segment for its execution, where each segment perforas a
specific suboperation on a distinct phase of the instruction. It is
considered that each segment has an output latch or register to help
retain its autonomy. Figure 1.2.1 illustrates a pipelined processor of

order 4,

If successively initiated instructions are always taken from a

single instruction stream, the processor is called a single instruction

. stream pipelined processor (or sometimes an overlapped machine).
However, allowing successively initiated instructions to be interleaved

from distinet instruction streams permits a single pipeline to implement

a multiple instruction stream pipelined processor. The following

b m—

definition aids in the understanding these two implementations.

.
8

. Definition 1.2.2 The rth process or inatruction stream, I(r) is a

Figure 1.2.1 A pipelined processar of order 4.

e

o 1 S — |
Phase t °&1-"'*§K31“"'*%xé1""'4;91 L.J .;

' 0 1 :fJ h
Phase t+1 51 “--1021*--%{E” o&n |

Figure 1.2.2 A single-stream, four-segment
pipelined processor.

SRR ey

sequence of instructions that require execution. Thus,

.

I(r) =5 @s ¥g05

where aij = ith instruction from the jth instruction stream. O

Figure 1.2.2 shows a single-stream, four-segment pipelined
processor. In this scheme, execution of instructions from a single
instruction stream are overlapped. The problems usually associated with
single instruction stream pipelined processors are the performance
degradation and control problems due to data dependencies and branch
instructions. 1In this research, we restrict our attention to multipie
instruction stream pipelined processor organizations in which the
performance degradation and control problems due to data dependencies and
branch instructions are absent. Figure 1.2.3 shows a four-stream,
four-segment pipelined processor. In general, s distinct streams are in
execution concurrently and if an instruction from a stream is initiated
at time instant t, the next instruction from the same stream will be
initiated at time instant t+s. Therefore, instruction execution overlap
is achieved only between distinct instruction streams and no execution

overlap occurs between instructions from the same stream.

The pipelined processor can be partitioned so that all segments take
the same time to complete their execution phases. Then in a pipelined
processor of order s, s seperate instructions will be in different phases
of their execution at any time instant. Since these s instructions come
from distinet instruction streams, the degree of multiprogramming is also

e

phase t
phase t+i
phase t+2
L S0 51 _ 92 R _J
Ph te3 ‘
e a1 %2 %%
S0 51 S2 33
hase t+4
Fhase " __%53 o

Figure 1.2.3 A four-stream, four-segment pipelined
processor.

——

[PV

Definition 1.2.3 One gezment Lime unit (SIU), is the time, in seconds

required by a segment to execute its distinct phase of an instruction. []

Hence if the phases of an instruction are partitioned so that it
takes T seconds to execute each phase of the instruction, then one STU

is equal to T seconds.

Pipelines in which all instructions have identical flow patterns are
termed gingle function pipelines. On the other hand, in a gultifunction
pipeline, there are two or more distinct flow patterns and each
instruction may use one of these flow patterns [18]. In this research,

it is assumed that the pipeline processor is a single function pipeline.

Assume that each instruction can 4issue one memory request per
instruction gvecle (or pipelined processor cycle); where one instruction
cycle = s T seconds. Hence a pipelined processor of order s can issue
one memory request per STU and a total of s requests can be issued in one
instruction cycle. The instruction here is the unjit instruction defined
by Strecker [19] such that each instructon issues one memory request per
instruction cycle and the instruction cycle is fixed. A pipelined
processor 1is then completely characterized for our purposes by s, the

degree of multiprogramming, and T, the segment time.

The generalized processor organization is now discussed.

Defipition 1.2,4 A parallel-pipelined procesacr of order (s,p) [20] is
modeled as a set of p identical and independent, but synchronized

processors, each of which is a pipelined processor of order s. a

S S T P PO P " ™~ —

| o e b e

Figure 1.2.4 illustrates the possible configurations of

parallel-pipelined proceasors; A parallel-pipelined processor is thus
completely specified for our purposes by the degree of multiprogramming,
s, the parallelism, Ds and the segment time wunit, T . A
parallel-pipelined processor of order (s,p) executes sp distinct
instruction streams concurrently and issues p simultaneous memory
requests per STU. From now on, all time units will be expresased as an

integer number of STUs, unless otherwise stated.

1.3 Program Behavior and Memory Hjierarchies

Two types of referencing behavior have been found to be
characteristic of almost all programs: temporal locality and spatial
locality (21]. Temporal 1locality implies a higher probability of
referencing information used more recently than that referenced a long
time ago. A high degree of temporal locality is expected from programs
with loops. Spatial locality implies a high probability of making
references in the near future to information which is close (in the
logical address space) to recently referenced information. We should
expect that programs will execute code sequentially and when branches do
occur they are usually over short forward or backward distances.
Sequentiality 1is a specific form of spatial locality. The principle of
sequentiality 1ndicatés that the successive information following the

information currently accessed is likely to be referenced next. This

type of behavior is expected from common knowledge of programs, i.e.

o

e §

ot

e T o T T o

IR

11

order: (1,1) order: (s,l)

1 1 2 —)-E
Nonpipelined Processor Pipelined Processor l
order: (l,p) order: (s,p)

1 1,1 | 2,1 > - -—)E
2 1,2 2,2 - —BEZ

p 1,p] 2.?»"' i' S,p

Parallel Parallel-Pipelined Processor
Nonpipelined Processor

LI I
e 0
E X 2

Figure 1.2.4 Configurations of parallel-pipelined processors.

related data items (variables, arrays) are usually stored together, and

instructions are often executed sequentially and input/output files are
usually accessed sequentially. Substantial sequentiality can also be

seen in data-base systems (22].

Some degree of temporal locality and spatial locality is inherent in
all programs. Their existence makes it worthwhile to retain in fast
access storage a subset of all the information which has been referenced
in the near past. On the other hand, prefetch or block fetch is used to
improve system efficiency by predicting the spatial 1locality or

sequentiality.

The sequentiality and 1locality of referencing behavior, commonly
found in the memory referencing patterns of computer programs, can be
used to predict which sections of a program’s address space are likely to
be referenced next. Due to program locality and sequentiality, memory
hierarchy is a cost-effective approach to improving the effective storage
access cycle by prefetching information from slower to faster memory
levels before the information is actually accessed and by retaining
frequently used information in the fastest memory level. Under temporal
and spatial 1locality, memory hierarchies attempt to maximize the
probability that information is in the faster storages when being
referenced. Memory hierarchies then achieve the approximate speed of
small, fast storages while maintaining the approximate cost-per-bit of
the larger, slower storages with lower cost per bit. In this section,

some program behavior is discussed and a general description of memory

hierarchies is presented.

Py

afie i = P

==

13

In general, an H-level paged memory hierarchy consists of a
collection of memory devices M1, Moyeeey My, a network of paths
connecting the devices, and a hierarchy management facility [23]. Each
device is partitioned into physical blocks called pages. The hierarchy
manageﬁent facility controls the page movement between the devices. A
reference from the processor can usually be serviced only from the
highest storage level, M,, Thus if the desired page resides in a lower
level storage M,, where 1 1, the hierarchy management facility must
bring that page up to M, for serving a request. Figure 1.3.1 illustrates
an H-level storage hierarchy. A storage hierarchy is called a Jligear
storage hierarchy if the only paths for moving pages down the hierarchy
are direct paths from each level, M1 to the next lower level, Mi+1' where
i=1, 2,¢.., H=1. Since we only consider a two-level cache-main memory

hierarshy, our memory hierarchy is a linear storage hierarchy.

For a two-level cache-main memory hierarchy, information is usually
fetched to cache memory on a demand basis whereby, when a datum is
referenced and is found to be absent from the cache (called a giss), it
is copied from the main memory to cache memory. On the other hand, a
reference 1is called a hjt if the desired datum is found in the cache
memory. The miss ratio is the fraction of all cache memory references

resulting in a miss. Similarly, the hit pratio is the fraction of all

cache memory references resulting in a hit.

The 1locality property of program behavior is usually considered

during hierarchy management design in an attempt to maximize the hit

ratios. For example, in the case of a paged main-secondary memory

14

processor

storage
hf level
M2

Figure 1.3.1. An H-level storage hierarchy.

15

hierarchy, the working set replacement scheme [24] performs well because
it takes advantage of program locaility. However, it is known that many
factors can affeect the performance of a memory hierarchy. In addition to
program behavior, performance is also a complicated function of each
memory level organization, the capacity and cycle time of each memory
device. A more careful and detailed study of shared cache-main memory

hierarchy will is presented in chapter 2.

1.4 characteristies of Cache Memory Devices

In order to achieve the speed requirement of a cache memory system
design, semiconductor memories are usually employed. Two types of
semiconductor memories, namely Random Access Memory (RAM) and Content
Addressable Memory (CAM) are normally used in the synthesis of cache
memory systems. With today’s semiconductor technology, RAM chips can

provide high-speed operation comparable to the processor speed.

However, due to the inherent necessity of mapping pages among the
levels in a memory hierarchy, intensive searches are usually executed for
each memory reference to determine the physical location of the desired
information. Searching is time-consuming in a RAM system because serial
searching must be employed. CAM devices provide capability for parallel

searching which allows mapping table 1lookup in one memory cycle. To

obtain a high-performance cache memory system, mapping information is

often stored in an assoclative lookup Lable (or gache directoty) in CAM

devices rather than RAM devices. In this section, the characteristics of

16

both RAM and CAM chips are discussed.

Typically, RAM chips consist of five functional blocks as shown in
figure 1.4.1. They include an address register and decoder, the storage
cells, and the input and output buffers. In some memory chips, the
address register and the output data buffer are not fabricated on the
memory chip. However, with recent developments in LSI technology, the

cost of fabricating these buffers on the memory chip is insignificant.

Let t_ _ and t,q be the chip select pulse width and the address pulse.

cs

width respectively. Furthermore, tdi’ t, and t,, denote the data input
pulse width, the write enable pulse width and the data output pulse
width, respectively. For simplicity, assume that the chip select and
address signals are gated into the chip simultaneously. Simplified
typical timing diagrams for the read cycle and the write cycle of the RAM

chips are shown in figure 1.4.2. and figure 1.4.3, respectively.

Defipition 1.4.1 The gemory cvele, t,, is the time that a memory chip
remains busy after a memory operation is initiated. For a read uwmemory
operation, the cycle is called the read memory gvcle, t,... Similarly, for

a write operation, it is called the wyrite memory gvcle, twc' O

Definiticn 1.%.2 The nmemory access time, t, ., is the time duration
between a memory operation being initiated and the output data becoming

available. =

A, >

¢ Address
s Input

Address Address

Register Lines

Ay

Chip
Select

Address
Decode

17
Reod/ Write
Request
Word RWM Dato Outowt | pata
) o e -
Select Matrix Buffer Out
Input
Dato
Buffer
Data re-3208
In

Figure 1.4.1 Functional blocks of RAM chip.

—————

AR oS S O R R R I R XXX XS
X R I I K X I KX R RIA ALK
B OOt Oat OO OO0 0 000000% 00 0 00,2020 0 [0 0 0 0707 0%

x AderSSg

e e a"0 " 0 s 0 0 €. 3.9 0. 9. Ta 0 0T0 6 0 6 9 0 o e
2 D0ta Out SRR AR
CRARKNNNX NN NINBICOCOONMNNASSODONNS

- 5203

' Figure 1.4.2 Timing diagram for read cycle of RAM chip.

18

y)
j.__n.

PRLTSTS o e 06 N0 e 0 0 0 e 6 6 s e 0"
ROERAX> Address. X XK R H X NI I KRR

O O OO s 052,9%%6%

7020%20 0% o 0% %070 707 0% %% %! ,8.0,0.98,9,%.5.9,8 8]

R e S0 o - e e b e 876 6 "
SRS m SISO ION O K XX KINRROCS
DR 0200030203000 20 000000 00 SN %% X000

20 70%070,0, ot a o e e e e ot e oo o e b0 e o e e e AN 20 0000 0 0 e 0 0 0000 0o %

e) G NI

nabl
Enable N l

Figure 1.4.3 Timing diagram for write cycle of RAM chip.

19

20

Refinitlon 1.4.3 The addreas held time, t,, is the minimum time
duration that the address must be maintained at the input to the memory

chip for a successful memory operation. 0

A typical CAM chip also consists of five functional blocks as shown
in figure 1.4.4, These include the input/output buffers and mask
register, the storage cells and select circuit. In a RAM the information
selected for reading or writing is identified by means of an explicit
address. However, in a CAM the selection is done on the basis of the
contents of the storage cells. Usually, each unit of stored information
is a fixed-length word. Any subfield of the word may be chosen as the
key. The mask register selects bits to be compared and the key 1is
pattern of 1 and 0 bits in selected key positions. The key is compared
simultaneously with all stored words; those which match the key emit a
match signal which enters a select circuit. The select circuit enables
the data field of the selected word to be accessed. If several entries
have the same key, then the seleét eircuit determines which data field is
to be accessed. Since all words in the memory are required to compare
their keys with the input key simultaneously, each must have its own
match circuit. The match and select circuits make CAM chips much more

complex and expensive than RAM chips.

The logic circuit for a 1-bit CAM cell (bit j of word i) is shown in
figure 1.4.5. It comprises a flip-flop, a match circuit for coamparing
the flip-flop contents to an external data bit, and circuits for reading

from and writing into the cell. To write information into this cell, the

write enable signal (WE) is set to 1, Si (select) is set to 1 for word

¥ e T —

R

I TR g

Input

L

input buffer

el

register
key

storage |match 3' select
array *§_el_§.C_t_ circuit

Figure 1.4.4 Functional blocks of CAM chips.

21

|
|
{
f

22

S; = word i select

= write enable

Ei= data bit j enable

Dj= data bit j input

Qf data bit j output

M..= match for bit j of word i

Figure 1.4.5 A 1-bit CAM cell.

23

- —

(i) 1into which writing is desired, EJ is set equal to 1 for all j, and

D3

accomplished by setting WE=0 and SJ=1 for the desired word to be read.

is set to the value of the data to be written. Reading is

The word location contents will then appear on the cutput QJ- To search

for a match, EJ is set equal to 1 for those key positions which are to be
matched. Bit positions for which E =0 will have match signals M;=0. The
search key 1s entered into the D, for the selected bits. Any cell for
which there is a mismatch between DJ and Qj will generate a 1 on ‘E;J ir
EJ=1, otherwise a 0 is generated on'ﬁkj. Figure 1.4.6 shows a 4 x 4 CAM
memory array [25]. Note that theii'lines of all cells in the same word
are connected by a wired-OR gate. Similarly, the output lines of bit j

in all words are connected by a wired-OR gate for each j. Since ‘Ei is

; the OR of M, for all j, M; will be O if and only if no M, 4=1 for any
for which EJ=1. Thus ﬁi=0 if and only if a match is discovered in all

i
selected bit positions. |
|

Foster [26] showed a ratio of 9:6 (or 7:5 if wired-OR is allowed)

between the number of gates required to make a bit of CAM and a bit of

T
B s T U

RAM. Thus CAM’s would cost between 1.4 and 1.5 times as much as RAM’s if
S semiconductor prices were purely based on the number of gates required.
S However,this basis is not correct because, due to the economics of mass
production of integrated circuits, prices can depend more on volume of

production than on complexity of circuitry. Lamb [27] presents a price

comparison based on the available commerical prices in July 1978. He

showed that the price per bit of a 16-bit CAM chip (speed is 35 ns)

offered by Intel Corp. can be 287 times that of a 1 K static RAM (U5

24

o —
)= E> i 2l
g e ey s
D e o e O = i W Ca
Y sr/ \I 'lH\ P Plh\ ©
o M e \ 1 u ~. 4.] /J 0
TS Mk e T4~ I3 ni4-+ T .
- -+ ‘Hw)} S o
o n) Wt -l m
ﬂ" - -,
WY o) M N
y ~
1, L 1A || N | gy o g o &
B .
o~ E“ < ah ML 4 ow ﬁx .\ ! ! ! 1 f m
(SN T=) X . 1 51 1 -
o B2 =+ =+ = g
T WY o .
b I Y5 ’ 1" 3 M
o’ Ay v \\7 C T \olm. T L ° >
— 3 117 b L1
— Elm S 11 . Lq 1 IH ' ' p
- ahl I - L1 1l . ML4d I <
Dl ¢ “,IH “ o i S
’W ‘I.V ‘|-" [4'
' 4 ‘\\ ° -
o = Wﬂ. - L 4 |
o o d v 5 .
o2, =1} n - - .m
DO T~ FJ! ” -~ “lh ™
< - (3]
3 < < AL
=

e ——

R4

1 25

ns) offered by the same company. The cost of CAM chips is so expensive

. that a large lookup table implemented by CAM devices in a cache memory
design is usually prohibitive. However, cache memories with a reasonable
performance can be implemented by using RAM devices only. These

alternatives will be discussed and modeled in the following chapters.

In general, t, <t , for RAM chips. Since the read memory cycle,
trc’ may not aiways equal the write memory cycle, twe» an effective
pemory gcvele of Lthe RAM ¢hip, which takes into consideration the

distribution of read and write memory accesses is introduced. Assume

that the fraction of read and write accesses of all memory requests are

g.and f,» respectively, such that fo+f,21. Then the effective memory

cycle of the RAM chip is tec = tr trc + fw twc For analytical purposes,
"memory cycle" will mean the effective memory cycle and is used as the
minimum time between two successive requests which can both be accepted

by a particular memory module. For CAM chips, the difference between

trc and t., is insignificant and sometimes t,, = Cyos thus t =t =

twc i3 assumed.

Therefore, a memory device is characterized by its cycle time,

tc. This is referred to as the ghsoluyte memory cycle because the cycle,

. tc is expressed in seconds. However, the memory cycle can be quantized

as an integer number of STUs, namely c:[%c/ T], where T is the segment

time unit in seconds. Hence the relatjive memory cycle is c.

i B
ot L o —————-—
P
.

1,5 Objectives of This Research

In general, a private-cache memory is attached to each processor in
a tightly-coupled multiprocessor computer system to improve the system

efficiency. The typical structure of these systems 1s illustrated 1in

figure 1.5.1. However, such a system will have the multicopy of data

problem as mentioned in section 1.1. Note that reentrant (or pure) code

avoids the multicopy of code problem because no modification of code is
allowed. This coherence problem usually exists in the following three

distinct forms:

(1) Multiple copies of shared data may exist in several
private-cache memories. Modification of any shared data by a
particular processor in its own cache memory will result in an

obsolete value of this shared data in every other cache memory.

(2) Multiple copies of data may exist in several distinct memory
levels. Modification of this data by a particular processor in

its own cache memory will result in an obsolete value of this

i e

data in main memory. This difficulty may occur even in a .!

uniprocessor with an independent I/0 channel because 1I/0 :

channels are normally connected to the main memory instead of to

o e s % e 8

the cache memory. In this case, the most recently updated '
version of the data may be either in main memory or cache

memory.

TR

(3) In a multiprogramming system, a processor usually switches to

[] [] [] p
Processors

p Private
Caches

P X M Crossbar

M
Main
Memory
i Modules

Figure 1.5.1 Multiprocessor system with
private-cache memories.

28

other jobs at the time of arrival of external interrupt signals
or input/output operations. After a job has been switched, the
most recently updated data of this job might still be in the
original processor’s cache memory. Hence a job running on a new
processor could use stale data in main memory. The new
processor cannot recognize the data as stale, and thus would not
be working with the job’s proper context. Such operation 1is
incorrect and can result in subtle errors that are difficult to

trace down.

In addition to the problem of possible incorrect operation due to
the multicopy of data, another problem is important in terms of
availability. It may be the case that a processor has modified data in
its cache for several different jobs before the main memory is wupdated.
If the processor suffers a failure before the main memory is updated for
those modified data, then other processors cannot select any of these
Jobs since their most recently updated dJdata, stored 1in the cache
associated with the original processor, cannot be directly accessed.
Therefore, these Jjobs are effectively lost. The jobs must be manually
restarted from the begining or from the last checkpoint. It is clear
that coherence problems may occur even if no data is shared between jobs.
Also this difficulty exists even in uniprocessor systems with an

independent I/0 channel.

In this research, a shared-cache memory structure is proposed ¢to

eliminate the multicopy of data problem for multiprocessor systems. This

e hmr 2 = i bmmd mannta

29

solution can resolve all three difficulties mentioned above without any
overhead penalty and hardware cost. However, with shared-cache memory
there potentially are cache access conflict problems. Hence the purpose

of this research is:

(1) To investigate the design methodology for shared-cache

miltiple-stream systems.

(2) To find proper cache management strategies for shared-cache

memories.

(3) To study the effect of program characteristics on dynamic

space-sharing.

(4) To evaluate the effect of cache memory interference on system

performance for a variet} of shared-cache memory configurations.

(5) To evaluate some design tradeoffs for obtaining cost effective

shared-cache memory and memory hierarchy configurations.

L6 Some Related Work

Although multiprogramming and time-sharing systems have been with us
for a long time, very little work has been done on the effect of the
interactions of various program characteristics on dynamic space-sharing.

The working set model of program behavior has been extensively used to

study these systems. Yet 1little attention has been given to dynamic

o= pemiaroquant

30

multiprogram interaction; only average or stationary characteristics have
been investigated. Belady and Kuehner [28] studied an empirical model of
the lifetime function, i.e. an average interval of program execution,
for multiprogramming systems. Their conclusion showed that an increase
of space does not significantly improve the processing potential when the
space allocated to a task is small. For a large space allocation, the
processing increment induced by additional space improves rapidly.
Finally, when the task acquires a sufficiency of space, the processing
improvement by adding more space is approximately zero. Note that the
lifetime function is a stationary measurement. If the program’s behavior
during a subinterval can differ significantly from the average,

conclusions based on the lifetime function may be inaccurate.

Coffman and Ryan [{29] modeled the working-set size as a normal
stochastic process and obtained more insightful results on the
characteristics of dynamic space-sharing. Their general conclusion was
that dynamic storage partitioning is superior when the variation in
working-set sizes is relatively large. One common conclusion obtained by
the above authors is that dynamic storage partitioning would not give
worse p;rrormance than that of fixed storage partitioning. Dynamic
storage partitioning performs better than fixed storage partitioning
because space-sharing 1s superior if some processes have large
working-set sizes while other processes have small working-set sizes.
However, program working-set size is a function of time. Even with a

large variation in working-set sizes, dynamic storage partitioning may

not pérform better than fixed storage partitioning if large working-set

e 0\ = mEbemy Sea o

P U "

3

sizes for some streams do not mostly match small working-set sizes for

other streams in time.

Rodriguez-Rosell [30] observed the oscillatory pattern in
working-set size behavior when the working set window 1is small.
Vantilborgh [31] explained this dynamic behavior of the working set size
by using a mathematical model. Unfortunately, they did not investigate
the effect of interactions of the dynamic behavior of several streams oa

system performance.

Cache memory is usually so small that it cannot contain the entire
working set of a single program. Hence, space contention in a shared
cache memory is much more severe than that in a shared main memory. The
dynamic interaction between several programs thus has a significant
effect on the performance of shared cache systems. In this research, the
phenomena of space-sharing under dynamically interacting programs of

various kinds are investigated.

One important application of multiprocessor systems is the parallel
miltiprocessing environment, such as image processing and matrix
computation. In such applications, many synchronization and
communication operations bdetween processes are needed and they are
usually implemented with the aid of critical sections and semaphores. In
addition to the possible computational data shared among processes,
critical sections and semaphores also involve a form of sharing.

Therefore, it 1is desirable to handle the coherence problem efficiently

for a high performance system under a large shared data workload.

32

The difficulties caused by the multicopy of data problem in
private~cache multiprocessor systems have been introduced in section 1.5.
Some systems, like C.mmp [2], try to avoid this coherence problem by
allowing only information from "read-only"” pages (especially
instructions) to apﬁear in the cache. In other words, the "store
algorithm” used in this system 1is the ";tore only in main memory"
algorithm. However, the mean write rate for most processor architectures
is between 10 to 30 percent of all accesses. For some instructions, the
peak rate is much higher: 50 percent for a long move and 100 percent for
a move immediate [17]. A commonly high write rate will greatly degrade
the performance of a read-only cache system. 1In another solution, called
the classical solution (17], addresses of modified blocks are broadcast
throughout the cache memories for invalidation. To 1insure coherence,
every cache is connected to a communication path over which the addresses
of blocks to be modified are sent. Each cache constantly monitors this
path and executes the proper operations for invalidation. Censier and
Feautrier [17] point out that the drawbacks of this solution are: high
invalidation traffic, low cache efficiency and the need for buffers to

accommodate the peak invalidation traffic.

Recently, Tang[16] proposed an algorithm which includes a
centralized "atore controller®" and a "central directory" to keep track of
every block in each cache memory. Also, he assumed that the "store only
in cache" algorithm is used. Each block is 1identified as shared or

private. A shared block can have more than one copy existing in

different caches, but allows read access only. A private block can have

only one copy in the caches at any time, but allows write access. In his
solution, overhead is due not only to the extensive search operations
executed in the store controller but also due to the checking of every
desired block status in order to initiate a cache memory operation. As
the shared data between tasks becomes large, normal cache operation may
be interferred with by commands from the store controller to change
shared Block status. This interference and overhead may be severe for
some kinds of shared blocks, such as those which c¢ontain critical
sections or semaphores, for which the'status may have to be changed back
and forth many timés during execution. Furthermore, the access conflict
problem may occcur at the store controller because it is centralized and
shared by all caches and channels. Censier and Feautrier [17] proposed a
solution very similar to Tang’s algorithm. In addition to the drawbacks
of their solutions mentioned above, none of these solutions can
efficiently resolve the coherence problem for multiprocessor systems in a
multiprogramming environment. That is, when a processor wants to switch
the Job, the processor must sweep its cache to validate main memory

before another processor can run the same job.

In this research, the coherence problem is resolved by the
architectural approach of sharing caches. The potential performance
degradation of this proposed structure is simply cache memory access
interference. However, this cache memory access conflict problem can
easily be overcome by using a sufficiently large number of cache modules

and can theoretically be alleviated to any desired degree.

Various analytic and simulation models have been developed to study

34

memory access conflicts. Several models [32-35] seem to assume a single
processor with instruction look-ahead capabilities. Here, we will only
present the analytic models of interleaved memory in multiprocessors.
The discrete Markov chain model proposed by Skinner and Asher [36] is
limited to a small number of processors (< 2) because of the complexity
involved for large systems. ~Strecker {19] investigated the conflict
problem in a multiprocessor system with P processors and N memory
modules. By approximate analysis, a closed form representation of the
memory bandwidth was obtained as N[1-(1-1/N)P]. Ravi[37] studied a
similar model and derived a complicated solution for expected memory
bandwidth. It is interesting to note that Strecker’s formula is a closed
form representation of Ravi’s formula. Bhandarkar [38] expanded on
Strecker’s results. Sastry and Kain [39] had similar models but also
investigated performance using distinct storage for instructions and data
with interleaving only in the instruction space. Baskett and Smith [40]
have also investigated the memory conflict problem in multiprocessor
systems. They derived several approximate solutions and compared their
predictions with simulation results. Briggs and Davidson [41,42] studied
a more general multiprocessor model in which the system consists of a
wide variety of parallel-pipelined processors of order (s,p) with two
dimensional interleaved memory configurations. The other models cited
involve special cases of their multiprocessor system models. 1In this
thesis, an adaptation of Briggs and Davidson’s memory organization will

be used as our shared-cache memory organization. A more detailed review

of their memory model is presented in chapter 2. .

Py

35

1.7 Overview of the Dissertation

Background material and motivation of the research have been

presented in this chapter. In chapter 2, the shared-cache memory
organization is discussed. A study of cache management strategies for
the shared-cache memory is given. Total system configurations are also
outlined. In chapter 3, the performance of the shared~cache memory
system is analyzed for two distinct cache models. A discrete Markov
approach and a probabilistic approach are developed for both models. A
probabilistic model for private-cache systems is also evaluated. Bounds
on performance are obtained for one of the shared-cache models. 1In
chapter 4, the accuracy of these models is evaluated by simulation. Some

effects of program behavior on dynamic space-sharing are discussed. The

effects of the various parameters on performance are investigated. In
addition, some design tradeoffs are studied. The performance of

1
shared-cache systems are compared with that of private-cache systems. f
Chapter 5 presents. overall conclusions and prospects for further '

research. |

PR —
-

rr—— .

]

36

CHAPTER 2

SHARED CACHE MEMORY ORGANIZATION

2.1 Introduction

As mentioned in the previous chapter, the use of ¢ache memory
provides an effective memory access time at the system levei near that of
the fast smaller cache memory with the apparent memory capacity near that
of the large and slower main memory. Thus, the processor ideally tends
to operate with a memory of cache speed but with main memory
cost-per-bit. This performance goal is similar to that of other systems
using memory hierarchies, such as paging or virtual memory systems.
However, there are some important differences between the cache-main
memory hierarchy and the main-secondary memory hierarchy. In contrast
with main-secondary memory hierarchy, a cache 1is uwanaged by hardware
rather than software, deals with smaller blocks of data, uses a smaller
ratio of memory access times, accesses second level memor), directly, and
holds. the processor 1idle rather than switching to another task while
blocks of information are being transferred from main memory to cache.
These 1important differences significantly affect the choice of design
parameters for these distinct memory hierarchy systems. For example, in

a multiprogramming paging system, the processor switches to another task

when a page fault occurs. Task switching makes the page transfer time

l 37

less critical to the system throughput. Task switching is necessary
since the ratio of memory access times can be as high as 1000:1 and the
task switching overhead is far lower than the page miss wait time. Page
hit ratio and task switching time rather than page transfer time are
considered as important parameters in such a main-secondary memory
design. However, in a cache system, the processor is forced to wait when
a cache miss occurs. Thus the throughput of this system critically

depends on not only the cache hit ratio but also the block transfer time.

Before any performance analysis for a cache system can be done,
certain cache design parameters have to be determined in advance. In
general, these parameters can be classified as functional

(orgggizational) parameters and component, parameters. Functional

v~ b= e —— r—————n —

parameters determine the hardware functions and system organization in a
cache system, such as address mapping mechanism, replacement algorithms,
main memory updating schemes, and so on. Component parameters determine
the physical sizes of various components in a cache system, such as total
cache size, block size, cache memory cycle time, block transfer time, and
80 on. Although these two kinds of cache parameters are not independent
of each other, from a system design point of view, functional parameters
should be determined prior to component parameters. In this chapter,
only the functional parameters of a shared cache memory design are
; . discussed and determined. A range of component parameters is examined

and their effects compared in chapter 4.

Cache memories have been with us for more than twenty years [43].

Today, cache memories are used by many of the prevalent machines (such as

T e T T e T R e e L e ———————

v

38

IBM 360/85, 360/195, 370/158, 370/168, Amdahl 470v/6, DEC PDP 10/L, PDP
11/70, ete.). The performance of cache memory for uniprocessor computer
systems is well-known [44,45,46-51] and satisfactory. But the design of
a shared cache memory for multiple-stream computer systems is quite
different from the design of a cache memory for conventional uniprocessor
computer systems. Furtor considerations apply to shared-cache
multiple-stream computer system design. Section 2.2 reviews various
cache memory mapping mechanisms and discusses their feasible application
to shared-cache memory design. In section 2.3, replacement algorithms
and main memory updating schemes for shared-cache memory is discussed.
Section 2.4 presents the L-M shared-cache memory organizations. Section
2.5 1illustrates various memory interleaving implementations and their
corresponding addressing formats. Section 2.6 explains request
scheduling in a shared-cache memory system. The last section gives
overall system configurations and considerations about realistic

implementations of some hardware functions.

2.2 Cache Memory Mapping Mechanisms

The addresses assigned to a cache are maintained in a
hardware-implemented memory map. Usually, this hardware memory map 1is
implemented btased on an associative memory. Associative memories are
very expensive, so that a number of mors economical memory mapping

mechanisms have been proposed [52]. Besides the consideration of cost,

several undesirable features may occur when some of these proposed

39

mechanisms are applied directly to a shared-cache memory design for
multiple-stream computer systems. In order to explain these undesirable
features and to determine a proper mechanism to be used in the future
discussion, the previously proposed mapping mechanisms are examined below

in detail.

2.2.1 Fully Associative Mapping

The conceptually simplest memory mapping scheme is called fully
associative. Cache memory and main memory are logically divided into
equal size blocks. In this case, any block from main memory may be
mapped into any block in the cache as shown in figure 2.2.1(a). This
requires that for each block stored in the cache, a corresponding block
address must also be stored in the associative locokup table, and at the
time of each processor request, a complete lookup table search must be
made for the referenced address. A fully associative lookup in a cache
tends to be extremely expensive and/or slow, because of the large search
required. However from the space contention point of view the fully
associative scheme is the theoretically optimum mechanism for
uniprocessor systems. Unfortunately, this parallel lookup search becomes
the most unacceptable drawback to using the fully associative map in a
multiple~stream computer system. Recall that a parallel-pipelined
processor of order (s,p) can issue p simultanecus cache memory requests

each STU. Then p-1 requests out of those p requests will be rejected due

to the conflict of parallel lookup search if one single-ported fully

¢ e o e T e s+ o=

Cache

Sector 0

Sector 1

Figure 2.2.1 Cache memory mapping mechanism:

(c)

Main

b---1

T

Main

Set 0

Set 1

Cache

L.--.

= o o af

Cache

(b))

Main

(d)

Main

(a) fully associative mapping, (b) direct mapping,
(¢) sector mapping, and (d) set associative
mapping.

40

41

associative map is used. OQbviously, this fully associative lookup is an
intolerable bottleneck in the 3system. A more detailed analysis below
shows that a severe bottleneck problem 1is inevitable if the fully
associative scheme is used in a multiple-stream computer system with

shared cache memory.

Generally speaking, an associative lookup table (or cache directory)

can be implemented explicitly or implicitly. Here an explicit lookup

table allows the referenced data to be accessed only if the corresponding

tag has already been checked; an implicit lookup table allows the tags

and the corresponding data to be accessed simultaneously. For an
explicit lookup table, the lookup table is usually physically separated
from the cache memory module. However, for an implicit lookup tabdie,
block addresses and data are usually stored together in the same cache
module. An explicit lookup table is usually built inside the processor
and i3 used when a procesor needs fast interrogation service. An
implicit 1lookup table provides the ability for readout and interrogation
to be achieved almost simultaneously. Implicit table implementation in a
shared fully associative cache can accept only one request at any time
because parallel (or associative) searching through the whole cache
memory 1is required. Therefore, a bottleneck occurs at the shared cache
memory in the implicit lookup case. 1In the explicit lookup case, if each
processor 1s allowed to have its own local lookup table, which contains
the information about its own cache usage, then the multicopy probiem
occurs in the local lookup tables because the cache is shared among all

processors; if each local lookup table contains the information about

42

overall cache usage, then maintaining all 1local lookup tables 1is
practically infeasible with present technology. As an illustration,
consider a parallel-pipelined processor of order (s,p): there are p
simultaneous requests issued every STU. At any time, if all p requests
result in -cache misses, then there may be sufficient time to update p
entries in each lookup table because the block transfer time is usually
much longer than the 1lookup table cycle. However, in the case of p-1
simultaneous misses, the lookup table has to be so fast that it can
update p-1 entries, 1i.e. p-1 write cycles for single-ported lookup
table, within one STU in order to accept the next request made by the
only currently hit process. When the number of processors, p, is large
or the segment time unit, T, is small, to meet this speed requirement for
the lockup table is not trivial. If these lookup tables are also used by
the replacement algorithm, then the situation becomes even worse since
the new state of each 1local 1lookup table critically depends on the
results of all p simultaneous requests. In order to avoid the multicopy
problem in the local lookup tables, the explicit lookup table has to be
centralized and shared. However, the lookup table maintenance problem
still exists and access conflict may occur at this centralized lookup
table. For these reasons we exclude the fully associative cache from

-

further consideration in the case of shared cache memory design.

2.2.2 Direct Mapping

At the other extreme is direct mapping. Cache memory and main memovy

e

43

are logically divided into equal size blocks. Each block has associated
with it its own specific tag. In this scheme, if there are N blocks in
cache memory, then every Nth block from main memory may be mapped into
one specific block of cache memory as shown in figure 2.2.1(b). The tag
associated with each block is actually the high order bits of
CPU-generated address. At the time of each processor request, the high
order bits of the CPU-generated address are compared to the tag of the
cache block to determine whether the requeated data is stored in the
addressed cache block. Because of the direct mapping aspect, there is
one, and only one, block of cache memory which can store a specific block
of main memory. Therefore, no associative lookup search is needed. The
tag comparison 1is achieved by using implicit lookup. Not only is the
hardware needed to provide direct mapping very simple, but also the cache
access time is small because the desired data and the desired tag can be
accessed simultaneously. A disadvantage of direct mapping in a
uniprocessor environment is that the cache hit ratio drops sharply if two
or more blocks, used alternately, happen to map onto the same block in
the cache. The possibility of this contention may be small in a
uniprocessor system if such blocks are relatively far apart in the
CPU~generated address space. The possibility of this contention in a
multiple-stream shared-cache system may be much higher than that in a
uniprocessor system because many concurrently active streams are sharing
the cache. As can be expected, the more streams Iin a shared cache
system, the higher the probability of contention. Thrashing may occur

while many streams are contending for a single block in the cache. Here

thrashing means that a just-replaced block is needed again immediately

4y

due to a cache miss. This phenomenon of excessively moving blocks back
and forth between cache memory and main memory can keep the cache busy
and the processors idle most of the time. Deadlock may also happen 1if
the processors are not allowed to access main memory directly and the
shared cache does not have the ability of load through [52]. Two
processes are deadlocked if neither can continue until the other
continues. Load through is simply the ability to by-pass the cache for
the specific data referenced when data is not found in the cache. Thus,
the data arrives at the CPU as fast as it could from a main memory in a
noncache organization. Without 1load through, a just-brought-in block
required by a specific processor may be replaced due to a cache miss by
any other processor before the request of this specific processor is
satisfied. Due to the high possibility of cache block contention and
performance collapse, direct mapping should also be ruled out for a

shared cache memory design.

2.2.3 Sector Mapping

In sector mapping, cache memory and main memory are logically

divided into sectors each composed of a number of blocks. A sector from
main memory can map into any sector in the cache., The requests to main
memory, however, are for blocks and if a request is made for a block not
in the cache, the sector to which this block belongs 1s assigned space in

the cache but only the block that caused the miss is brought into the

cache and the remaining blocks of this sector are marked invalid. Figure

e
[}

FyPe—y

e e ey e ey e T o m—

45

2.2.1(¢) 1illustrates the sector mapping with a two block sector.
Although sector mapping needs relatively few tags (one tag per sector in
the cache plus 1invalid bits), the performance of this mechanism is now
lknown to be unsatisfactory since sectors in cache may not have high space
utilization. In a shared cache system using sector mapping, the same
bottleneck problem as that mentioned in fully assocliative mapping will
result due to the fact that sectors are randomly mapped. It follows that
sector mapping is not an acceptable candidate for shared cache memory

design.

2.2.4 Set Associative Mapping

In the set assoclative mapping mechanism, again, cache memory and
main memory are divided into blocks, with each block of cache memory
having a tag associated with it. The blocks in cache memory are then
grouped into sets. The set size is the number of cache blocks contained
in each set. If the cache is divided into N sets, then a block i in the
main memory is mapped into the set j in the cache satisfying 1i=j(modulo
N). Each set 1s conceptually controlled by a small associative memory,
so that mapping within each set 1is fully associative, In figure
2.2.1(d), a set associative mapping with a set size of two is shown. Set
assoclative mapping reduces to direct mapping when the set size equals
one; it reduces to fully associative when the total number of sets in the

cache equals one. Intermediate set sizes lead to mapping methods

requiring an intermediate amount of associative hardware. For each set

T

46

of size s the associative mapping within the set permits any s blocks,
selected from those which belong to this set, to be stored in the cache

simultaneously.

It has been shown for uniprocessors that set sizes of 2 or 4 under
set associative mapping perform almost as well as fully associative
mapping at 1little cost increase over direct mapping [46]. The set
associative mapping mechanism has become widespread for the operation of
cache memories for reasons of cost and efficiency. In a multiple-stream
shared-cache system using set associative mapping,there exists no
parallel 1lookup bottleneck problem such as that in the fully associative
and sector mapping schemes since each set in the shared cache is uniquely

addressable by all the processors. Block access contention may still

occur within each set in a shared cache memory system. This contention
can be reduced to very low levels by choosing a reasonably large set
size. The appropriate set sizes for multiprocessors with shared cache ;
will be evaluated later. Each set in the shared cache system can only
accept one request per STU for single-ported lookup tables because an
associative search is needed for blocks within each set. This conflict
problem can also be reduced to very low levels by using an appropriately
large number of cache memory modules each of which contains few sets or
only one set. Then this conflict problem is essentially the same as the
memory conflict problem in multiprocessor systems with shared main
memory. Since associative mapping is used only for blocks within each

set, each assoclative 1lookup table is updated if and only if a request

has been made to and accepted by the associated set. Note that there is

;
?
i
|

47

at most one such request per STU for each set. Only the results of this
request can make the referenced associative lookup table change to a new
state. The time needed to update the associative 1lookup table is
transparent. As shall be seen, the set associative mapping mechanism is
the most suitable and promissing candidate for shared-cache memory system
design if a set of proper component parameters is chosen. The rest of
this thesis 1is based on the set assoclative mapping mechanism, except

where mentioned.

2.3 Management of Cache-Miss

Another important cache memory management decision is the choice of
replacement algorithm which determines which blcck or blocks will be
removed from cache memory in order to make space avallable for new
blocks. This choice 1s constrained by the selected mapping mechanism.
For set associative mapping, a cache miss when referencing a particular
set causes some block in that set to be replaced. Various page
replacement algorithms have been proposed {23,53]). Since it is generally
impossible for the cache to keep the working set [2i] of even one program
in the cache at any time, and also because of the high speed requirement
of the cache controller, only simple and fixed space replacement
algorithms such as LRU, FIFO, and RAND are generally considered. The LRU
(Least Recently Used) replacement algorithm replaces that block in a set
which has not been referenced for the longest period of time; the FIFOQ

(First In First Qut) replacement algorithm replaces that block in a set

48

which has been in the cache memory for the longest period of time and the
RAND (RANDom) replacement algorithm selects from the set a block to be

replaced at random.

2.3.1 Replacement Strategies

FIFO has the advantage that it is easily implemented.
Unfortunately, this method has the defect that some frequently used
block, e.g. one contained in a program loop, may be replaced because it
is the oldest block, yet it may be the block referenced next. FIFO has
been shown to exhibit other anomalous behavior for certain reference

strings [54]. This page fault anomaly is the phenomenon that increases

in memory size can also increase the number of page faults, i.e. FIFO is

not a stack algorithm in the sense of [23].

RAND is a very simple and naiv; procedure. RAND, 1like FIFO, may
also replace a frequently used block because the replaced block is
randomly selected. Although RAND yields acceptable berrormance when set
size 1is large enough, the cache tends to be expensive and/or slow for

large set sizes.

The LRU replacement algorithm is based upon the very reasonable and
empirically justified assumption that the least recently used block 1is
the one least likely to be referenced in the near future. Thus the LRU
algorithm tends to avoid the replacement of frequently used blocks, in

contrast to FIFO and RAND. The LRU replacement algorithm has a

49

characteristic very similar to that of working set replacement policy.
Both these algorithms are adapted well to program behavior and based on
the principle of locality of reference. The LRU algorithm is a stack
algorithm and therefore the hit ratio increases monotonically with the
memory size [23]. This characteristic guarantees that the page fault

anomaly mentioned above will not occur with LRU.

Comparisons between RAND, FIFO and LRU were made by Belady [53], and
it was observed that RAND and FIFO gave similar performance results. LRU
gave improved results. Hence only the LRU replacement algorithm will be
considered further in this thesis. In the multiple~stream processor
system with set-assoc¢iative shared-cache using LLRU, each set has its own
hardware-implemented LRU replacement algorithm. All the streams in the
system thus compete for cache space by competing for their share of the

blocks within each set.

A very important criterion for the LRU replacement hardware design
is speed. The set size chosen should represent a compromise between
minimizing the miss ratio and minimizing the speed and cost. Small set
sizes result in competition among simultaneously active blocks for the
small number of spaces in a set; large set sizes require more hardware
for search and replacement and/or operate more slowly. The choice of set

sizes and other component parameters will be discussed when the

simulation results are analyzed in chapter U,

2.3.2 Cache Block Fetch and Handling of Write-Miss

So far Lhe fetch strategy, i.e. demand or prefetch, has not been
resolved. The fetch strategy defines the policy of when to load blocks
and how many blocks to load at a time. Since cache size is much smaller
than main memory size, the space contention in a cache is more severe
than that in the main memory of a paging system. Block prefetch is
normally not used at the cache level. Usually the cache is so small that
it cannot hold the entire working set of a program. Thus, it is very
possible that some frequently used blocks would be expelled in order to
allocate prefetched blocks. The prefetched blocks may not be referenced
in the near future or may not be referenced at all due to changes of
program locality. All the previous studies, i.e. [45,u46-48,51], of
cache design show that the hit ratio drops if ‘the block size exceeds
certain minimal values. This well-known result illustrates that
sequential block prefetch may not be suitdble for cache design. In this

thesis, only demand fetching, i.e. fetch one block on miss only, is

considered.

There are two possible variations of demand fetching, that is, write

allocation and no-write allocation [45,46]. No-write allocation brings a

block into cache only on a read miss; write allocation brings a block
into cache on read as well as write miss. 3Since these two fetching
strategies are tightly related to the manner in which processor writes to

memories are handled, the determination of fetching strategy will bde

deferred until the main memory updating scheme is chosen.

W acanund

51

Basically, there are two kinds of main memory updating schemes. In
the simplest approach, known as write through [45,55,56], all writes are
sent to main memory, the block is also updated in cache if it is there.
In this case, it is 1implied that the processor has the ability to
directly access the main memory and the blocks are brought into cache
only on misses for processor read-memory requests. Hence write through
is wusually used with no-write allocation. Write through is also called
store through by some authors [17,52]. An alternative approach, known as
swapping (52}, 1s to write the word in the cache and then always write

the word in main memory when the block in cache must be replaced. Since

~direct modifications of data always happen in the cache, this approach is

usually used with write allocation. Swapping is also termed write back

{us3, block swapping [46], conflict-use-writeback [55], or

nonstore-through [17].

The effectiveness of write through is known to be less than that of
swapping in a uniprocessor system [52,46,55]. A lot of unnecessary
writes may occur with the write through strategy because a word may be
updated several times during the time it resides in the cache. The
statistics of instruction mixes show that, depending on the processor
architecture, from one tenth to one third of all accesses are write
accesses [17,55]. The access rate to main memory cannot be less than the
write access rate of the processor if a write through updating strategy
is wused. Recall that in order to gain maximum advantage from the cache,

the fraction of references to main memory must be minimized. This points

out that pure write through is not suited to high performance systems.

——— e e

52

Although write through can be overlapped with cache cycles because the
write operation has no deadline, the processor will be forced to wait on
the successful completion of writes to main mewory if there is no buffer
used for writing the main memory. Recently, Smith [56] reported that a
suffic.ently large buffer for write-through can greatly reduce the
performance difference between write-through without buffering and

swapping.

On the other hand, in addition to conceptual simplicity and ease of
implementation, write~through has the advantage that obsolete information
is never present in main memory. This can be particularly valuable in
systems with independent input/ou.put paths. Note that the input/output
channels have data rates substantially lower than instruction processors
and therefore there is no performance advantage in connecting them to a

high speed cache,

The advantage of the swapping schemes is that, at least in theory,
the access rate to the main memory is the miss rate and may be reduced to
any desired value by a sufficient increase of the cache size. However,
the swapping schemes have the disadvantage of invalid multiple,
nonidentical copies of the same data existing in several memories. Pohm
(57] identifies three swap algorithms: simple swap, where information is
always written back when it is removed from the cache; flagged swap, by
which only information that has been changed is written back to main
memory; and flagged register swap, by which a block of information in the
cache that has been changed and is to be written back is swapped into a

register buffer and then written to the main memory after the fetch has

AT W e L

e el e .

53

been completed. It is shown [57] that a flagged register swap algorithm
yilelds the best performance among all the above three schemes and the

write~through scheme without buffering.

Up to now, discussion about main memory updating schemes has been
based on a uniprocesor system or a aystem with a single CPU and several
asynchronous input/output channels. Unfortunately, the above results and
conclusions cannot be directly applied to multiprocessor systems. The

reascns are explained below.

As shown in figure 1.5.1, there exists an interconnection network
between the caches and the main memory modules in a private-cache
multiprocessor system. If a write through scheme is used in such a
system, the high write access rate to the main memory will increase the
main memory conflict. Note that in a multiprocessor system with p
streams and p private cache memories, the write access rate to the main
memory 1is p times higher than that for a uniprocessor system if both
systems use write through. In addition to the access conflicts between
the block transfer operations, access conflicts between write accesses
will take place as well as interference between block transfer operations
and write accesses. Furthermore, the intverconnection network is switched
very often due to the high write access rate. This will cause setup time

overhead if a slow switching network is used. The main difficulty is

that write through will cause the multicopy of shared data among private

cache modules. In section 1.6, two previously proposed solutions [16,17]

of the multicopy of shared data problem have been discussed. In these

two algorithms, swapping is implied because both algorithms treat a block

o) - et S ST,

54

as a critical section when this block is being modified. All the
modifications of data have to be done in all the relevant caches and then
the blocks are copied back to the main memory when replaced. The
swapping scheme with write allocation is the primary requirement for
these algorithms. Consider that if write through is used, then every
single word write access becomes a critical section in order to solve the
multicopy of shared data problem. Clearly, this is an intolerable design
and swapping with write allocation 1is preferred in a private-cache

multiprocessor computer system.

Due to the fact that there is no switching network needed between
the cache and the main memory in a shared-cache multiple-stream system
(see section 2.7 for explanation), write through in such a system will
not cause severe main memory access cqnflict. Updating the main memory

can be overlapped with the processor cycle if sufficiently large

buffering for write through is provided. 1In this case, the interference ;
between write accesses and block tranafer operations on the same bus line
can be supressed if a higher priority among main memory accesses is
granted for block fetches and lower priority for queued write accesses to
the main memory. It might happen that a read access to a block in the u
main memory occurs due to cache miss before this block is updated to

reflect pending writes. This situation can easily be handled by adding

some hardware control in the main memory. Every block read access to the
main memory then searches the corresponding buffer to determine whether
the referenced block needs to be updated. This buffer search time can be

expected to be small compared to the total block transfer time and can be L

55

included in the ©block transfer time, T, for analytical purposes. The
write-through with buffering scheme discussed above preserves the
advantages and eliminates the disadvantages of a simple write-through
scheme. It may also enhance the hit ratio since all the write accesses
are considered as hit requests. Therefore, the write-through with
buffering updating scheme and the no-write allocation strategy are

desirable in a shared-cache multiple-stream computer system.

To be able to make a fair comparison between private-cache and
shared~cache organizations, a flagged register swap algorithm is
considered in the private-cache multiprocessor systems. Then, updating
the main memory is overlapped with processor cycles in both systems.
Similarly, for private-cache systems, the register search time can be
considered as part of the total block transfer 'time. Note that the major
interest in this thesis is the performance variation due to the memory
conflict problem and the hit ratio behavior for a range of cache
organizations. The effectiveness of particular buffer sizes for various
main memory updating schemes is not investigated. 1In the rest of this
thesis, it is assumed that a sufficiently large buffer size is used 1in
all models such that the processors will never be blocked due to the main
memory updating operations caused by either the write through or swapping

policy.

The cache management options presented so far, such as wmapping
mechanisms, replacement algorithms, and write policies (write through and

write back) do not affect the analysis presented in chapter 3.

56

2.4 L-M Cache Configuration

In the previous sections, several functional parameters of cache

memory design have been discussed. Before any analytic model can be {
|
developed for shared-cache memories, a shared-cache memory organization (

has to be chosen in order to determine cache memory request scheduling.

One memory organization which is suitable for multiple-stream processor

architecture is reviewed in this section. !
]
|

The memory organizations for multiprocessor systems discussed by 1
most authors use N address busses for N independent memory modules.
Although the performance of such a memory organization is good, the bus

cost and the interconnection network cost are usually high. Recently, a

0O s oo

two-dimensional memory organization which intends to increase the bus
utilization and reduce the cost of both the interconnection network and ¥
bussing is investigated by Briggs and Davidson [41]. This organization,
referred to as the L-M memory organization, can achieve high performance
without sacrificing cost-effectiveness and is used as the shared cache j
memory organization in this thesis. The rest of this section reviews the
L-M memory organization and explains the way that this organization is

adapted for shared cache memory applications.

Many large scale integrated RAM chips have their address cycle

significantly smaller than the memory cycle. Therefore, more than one

module can share one address bus thereby increasing the bus utilization

and reducing the bus cost. To¢ allow maximum address bus sharing, the

address hold time, a, on the address bus should be designed as short as

57

possible. This may be achieved by incorporating an address latch within
each memory module. Then, the address hold time on the bus for each
memory request is the address bus cycle time which is only a small
fraction of the memory cycle time. Whenever a memory module is active
for a memory cycle, its associated address bus is active for only this
small fraction of the memory cycle. By multiplexing a group of memory
modules on an address bus, the period for which the bus is inactive may
be used to broadcast the addresses of new memory requests. Although the
performance is degraded as a consequence of bus-sharing, some address
busses can be eliminated and the size of the processor-memory
interconnection network can also be reduced. This tradeoff between
bus-sharing and performance will be studied in later chapters.
Similarly, data busses can also be time-multiplexed if latches are
provided within each memory module to gate-in write data and drivers can
be enabled to drive out read data. For simplicity, it is assumed that
the address bus is busy as long as there is some cache module on that bus
which is involved in a block transfer operation. Hence the data busses
do not pose a limiting constraint and are not explicitly considered from

now on.

In the following discussion, a line is used to denote an address bus
within the memory. Hence, assuming that there are N identical memory
modules in the shared cache memory, there can be up to N independent
lines in the memory. The L-M memory organization, shown in figure 2.4.1,

consists of & (=2K) iines and m (220K) memory modules per line, such

that a total of N (22" = 4m) identical memory modules are arranged in a

e e e —

e

58

M
00 Mo M
éo &31

My Meat

Figure 2.4.1

L~M memory organization.

59

two~-dimensional matrix form, where both k and n are integers and 0 s k s
n. Therefore, a particular configuration of the L-M memory organization

can be characterized by the corresponding gemory configuratjon, (£,m).
In figure 2.4.1, L; and My 4 represent line i and module j on line i,
respectively. It 1is obvious that no line sharing is required if the
segment time is greater than or equal to the memory cycle time (c=1). In
this case, the performance is independent of the number of memory modules
per line. Figure 2.4.2 shows the bus structure of the L-M memory
organization. Each set of modules on a line in addition to sharing the
same address bus share the same data input and data output busses. That
is, there 1is one each of address, data input and data output busses for

the set of m cache memory modules on each line.

2.5 Address Interleaving

Memory interleaving is a common and inexpensive way to yield high
effective memory bandwidth. In a multimemory system with N memory
modules, if successive word addresses are assigned across the memory
modules, module N, the memory is interleaved by low-order bits, or

interleaved by words. The low-order log N bits of each address indicate

the module number in this case. However, this low-order-bit interleaved

memory is not suitable for shared cache memory applications for the

following reasons :

(1) While executing the block transfer operation due to a cache miss,

e I T T I el I

Bt s g L & LSO e il A - i - _ -

60

Data Input
Bus For Line O

G Daota Qutput

7 ﬂ Bus For Line O
Address
Bus For Line O ¢ * ¢

Dato 1nput
Bus For Linel
- Date Qutput
I ; Uaus For Line 1
] . ° ° —?
Address o .
Bus For Line 1
®
[
o

Data Input

Bus For Line l-l[lﬁ
-t — Data Output

r B I 1 Bus For Line £-1

Address
Bus For Line £-1

[{ad 1 2]]

Figure 2.4.2 Bus structures of the L-M memory organizationm.

o —" g i bt e o -

————

(2)

log

61

the whole cache system will be busy and all the processors will be
blocked for the block transfer period. One stream with poor cache
performance may then degrade the performance of all the other

streams in the system.

For the set associative cache memory mapping mechanism, each block
of cache storage has an identifying tag associated with it. ir
low-order-bit 1interleaving is used in the shared cache memory, then
the words in one block will be spread over several, or perhaps all,
cache memory modules. So, the number of tags required may be up to
N times the number of blocks contained in the cache memory if an

implieit 1lookup table is used. 1In this case, the cache memory cost
is high because many tags are needed. In the extreme, when the
block 8izs is smaller than the number of cache memory modules, then
each word in the cache memory needs its own associated tag.
Unfortunately, an explicit centralized lookup table cannot be used
because it would cause the same bottleneck problem as that discussed
in section 2.2 for the fully associative mapping mechanism.
Therefore, a costly cache memory is inevitable if the shared cache

memory is interleaved by words.

On the other hand an uninterleaved memory, in which the high order

N bits of each address determine the memory module, cannot

effectively reduce memory access conflict in multiple-processor

environments.

oy ot ety gt

62

Therefore, in order to keep the number of tags equal to the number
of blocks in the cache memory and to try to enhance the effective cache

memory bandwidth at the same time, a compromise solution of address

interleaving is proposed here. A memory is called interleaved by sets if

the successive set numbers are assigned across the cache memory lines.
Figure 2.5.1 shows the address format for a set associative cache memory

organization, the 1least significant b bits of the address determine the :

word address within a block, the next higher order d bits c¢f the address
determine the set address in the cache, and the remaining (high order)
bits are used as the tag to identify the particular block within the set.
Integers b and d specify the block size (=2Y words) and the total number
of sets (=2d sets) in the cache memory, respectively. The right-most b
bits of the address are then referred to as word bits; and the next d
bits of the address are called set bits. The shared cache memory can ?
easily be interleaved by sets by choosing either of the following two ’

possible implementations.

The address format for the first implementation is shown in figure
2.5.2(a), Assume that the total number of sets is greater than or equal {
to the total number of cache moduies. Given the memory address of a
word, the k least significant bits of the set bits address one of the
2 1lines, Ly, and the next higher order n-k bits address one of the
Zn'k modules on line i, “1,4’ Then the high order d-n bits of set bits

d-n

address one of the 2 sets in module M1 3 and the tag bits are used for
’

associative search. If the assoclative ssarch results in a hit, then the

g

b block bits address one of the zb'words in the hit block; otherwise, a

B e e

63

— Tag ~—d— —b—
Block in Sets Word in
Set Block

Figure 2.5.1 Address format for a set associative
cache memory organization.

——d \

d-n n-k k b

T ! [
I Set | Module | Word
Tag { in | on H Li in
: Module} Line' : ne Block
S d /" b N
d-k k n-k
Set 1| i Module
Tag in i Line i on
Module } | Line
| !

L= 2K
m=2n'k
N=2"=4-m

Figure 2.5.2 Address formats for two
implementations of interleaving by sets.

et mai it

R i

64

miss occurs and a block transfer operation may be initiated according to
some fetch policy, discussed in chapter 3. HYence, the cache modules are
interleaved on the low order n bits of the set bits and the lines on the
low order k bits of the set bits. Note that the set size is not
explicitly indicated in the address format and is dependent on the block
size, the total number of sets and the total cache capacity. Although
this implementation requires no tag duplication because each set is
wholly «contained in a particular cache module, potential serious
performance degradation may result from blocking due to the long block
transfer time required. This implementation requires new blocks to be
loaded into the cache one word per cache cycle during the block transfer
operation. Hence the block transfer time, T, is primarily dominated by
the cache cycle time, ¢, and the dlock size if high main memory bandwidth
is provided. As mentioned before, while a module is involved in a block
transfer operation, the associated line is busy until the block transfer
operation is completed. Therefore, for a slow cache or a large block,
the block transfer time is long and all the cache modules on a line being

used for block transfer will be blocked for a long period.

Another implementation tries to improve the performance by reducing
the block transfer time without changing the system organization. Assume
that the block size is greater than or equal to the number of cache
modules per 1line and the number of sets is greater than or equal to the
number of lines. Figure 2.5.2(b) illustrates the address format for this
implementation. Given the address of a word, the k least significant

bits of the set bits address one of the 2¥ lines, L the n-k least

1,

%

st

o e,

s i g

65

significant bits of the word bits address one of the 2n-k modules on line
i, Mi,J’ and the high order d-k bits of the set bits address one of the
Zd'k sets in module Mi,J‘ Since the least significant n-k bits of the
address, the word bits, determine the module number on some line, the
successive words in a block are interleaved across the modules on the
same line. Hence the modules on one line can be considered as a wmemory
interleaved by words. During the block transfer operation, those modules
on the same line can not be cycled synchronously because the associated

line i3 time-multiplexed. However, they perform like phased memories (or

interlaced memories) in which each of the memory modules is cycled on a

different minor clock c¢ycle. The minor clock cycle here is the signal
propagation time from main memory to cache memory, usually made equal to
the bus cycle time (1 STU) discussed above. Therefore, new blocks are
loaded into the cache one word per bus cycle,.instead of one per cache
cycle, during the block transfer operation. By properly choosing the
number of modules per line, a phased memory system can have the same
bandwidth as that of a parallel accessible memory system with the same
cycle time and the same number of modules. Note that the L-M memory
organization 1s actually a parallel phased (or interlaced) memory
organization. Note that successive sets are assigned across modules on
distinet 1lines and successive words of a block are assigned across the
modules on the same line. Although this implementation could reduce the
block transfer time, more tags may be needed due to the fact that each
block is spread over m cache modules, For a cache with an implicit

lookup table, one tag is needed for each block within every cache module.

Therefore, over the entie cache each tag is replicated m times,

66

However,if an explicit 1lookup table is associated with each line (as
discussed in section 2.7), then no extra tags are required. Such an
explicit lookup table can be used without dggrading performance if the

lookup table cycle time is less than or equal to one STU.

These two possible implementations become the same if m equals 1,
that is one module per line. The choice between the two implementations
involves the tradeoffs of performance and cost, i.e. block transfer time

and number of tags.

For brevity, a shared cache memory interleaved by sets with a memory
configuration characterized by (£,m), is a particular realization of the
L-M memory organization, where the number of lines,{ =2k, and the number

2"k, por example, if k=3, nz=5, then £28 and m=4.

of modules per line, ms=s
Hence we have a memory configuration of (4,m)=(8,4). The total number of
sets in the cache and the block size are determined by d and b,
respectively. For example, given a 4K cache memory with b=4 and d=5,

then block size is 16, number of sets is 32, number of blocks is U4096/16

= 256, and set size is 256/32 = 8.

2.6 Shared Cache Request Scheduling

In section 2.4, it was assumed that address and data input latches
and selectable data output drivers exist in every cache memory module to

allow minimum bus usage time for each request in order to achieve maximum

line sharing. It has been shown in a previous study [41] that

oy

67

performance decreases as a, the address hold time on the bus (or address
bus cycle time), increases. Since a=z1 is realistic, simpler to design
with and model and allows fewer lines (£> ap is recommended by this
previous work), the address bus cycle time is then assumed to be less
than or equal to one STU throughout this thesis, i.e. the address hold

time on the bus, asl.

Recall that a parallel-pipelined processor of order (s,p) issues p
simultaneous cache requests each STU. Of those p parallel requests, some
of them might address the same line resulting in a conflict. Even when
all p simultaneous requests address distinct lines, conflict can still
result if a request addresses a line which is still executing the block
transfer operation for a previous cache miss or a module which is still
executing the cache cycle for a previous cache request. Such a line or
module which is serving a prior request at time t is said to be busy or
active at time t. If a line or module is not busy, it is said to be idile

or inactive.

Definition 2.6.1 A cache memory request collision is said to occur when a

cache memory request attempts to access a busy line or module, or when at

least two simultaneous cache memory requests attempt to access the same

line. O

When more than one request attempts to access the same line

simultaneously, a multiple access line collision occurs. When a request

passes through the multiple access line collision and attempts to access

A AT T

68

a busy line, a line collision occurs. Similarly, a module collision

occurs when a request passes through both the multiple acccess line

collision and the line collision and attempts to access a busy module.

Refinition 2.6.2 The status of module M, at time L is Ly busy or idle

at time t, and M; , busy or idle at time t. O

Both the status and the content of a memory module addressed by a
request are required to determine the outcome of the request. A request
can access module Mi,J at t if and only if Mi,j and its line L;, are both
idle at t. Hence a request is prejected if it addresses a busy 1line or
module. However, if all simultaneous requests to a line refer to idle
modules on that line, one of these is accepted and the others rejected.

A request is termed an acceptable request if it addresses an idle module

on an idle line. If there is only one such request for a 1line, the

request will be accepted. When there is more than one simultaneous
request for an idle line, one of them is selected arbitrarily and the
others are rejected. The selected request is then accepted if and only

if it addresses an idle module, i.e. if and only if it is acceptable.

Definition 2.6.3 A request is” either successful or unsucessful
(blocked). A successful request is an accepted request which results in a
hit; an unsuccessful request is either a rejected request or an accepted

request which results in a miss. O

A request goes through the memory system in the following way.

69

Suppose it gets initiated on line Li at time t. Then it keeps that line
busy for one time unit in the interval (t,t+1). Following this, it
initiates a memory cycle on the addressed module Mi,J’ which keeps that
module busy for ¢ time units in the interval (t+1,t+c+1). In other
words, the line Li is busy at time t, and the module Mi,J is busy with
respect to other requests at times ¢t+1, t+2,..., ¢t+c-1. However,
following an initiation of a block transfer at time t on 1line Li and

module Mi,J’ both Ly and Mi,J are busy with respect to other requests at

time t, t+1,..., t+T=1 if the implementation of figure 2.5.2(a) is used.
Hence L1 and Mi,J remain busy in the interval (t,t+T). If the
implementation of figure 2.5.2(b) is used, then all the modulés on the
same line will be involved in the block transfer operation when that line

is used for block transfer.

One simple method of handling the unsuccessful requests is to
recycle their processes through the processor segments and resubmit them
as new cache memory requests one instruction cyecle later. During the
recycling of each unsuccessful request, a control flag is set for the
process which originated the unsuccessful request to deactivate execution
of that process until the request is satisfied (successful). Once the
request is satisfied in some later cycle, the flag is reset and execution
of that process is reactivated. This method for suspending process
execution requires no distinction between an unsuccessful request due to
conflict rejection and cache miss. Actually, from the procesor point of

view, the cache memory is a resource with constant service time.

Therefore, the processor should receive the data for a read access or the

70

completion signal for a write access by a certain deadline after a
request has been made. Otherwise, the request is unsuccessful and the

control flag is set automatically.

As discussed in section 2.2.2, deadlock might happen due to the
space contention in a system with small set sizes and a large number of
streams. A modified LRU replacement mechanism can eliminate this
deadlock possibility. Here the modified LRU replacement mechanism is a
simple LRU with the added property that once a block is brought into the
cache it does not become eligible for replacement until it has been
referenced at least once. For simplicity, whenever a request results in
a cache miss, this miss request will be rejected if the least recently
used block in the set has not been referenced at 1least once. In this
case, no block transfer operation will be initiated and the modified LRU
will not change state. This rejected miss request will be resubmitted
next instruction cycle. Otherwise, a normal LRU replacement mechanism is

used.

Another possible method of handling the unsuccessful requests is
that processors do not resubmit the unsuccessful requests due to cache
misses and resubmit the requests only for those requests rejected due to
access conflict. Whenever a cache miss occurs for a reque;t made by one
particular processor, this processor is held idle until the data which
caused the miss is loaded from main memory directly ¢to the processor.
During the waiting period, this process simply makes null passes and

makes no request.

7

In chapter 3, the first method of handling the unsuccessful requests
is assumed for developing the basic analytical models. However, the
analytical models for the second method of handling the unsuccessful
requests can be obtained by direct extension of those basic models with

some additional assumptions. This extension is discussed in chapter 4.

In summary, there are basically four different reasons for a request
to be blocked. Let h denote the cache hit ratio. A cache memory request

may be unsuccessful due to

(1) Multiple access line collision, which may occur only if p>1,

(2) Busy line collision, which may occur only if h<1 and T>0,

(3) Module collision due to a busy module on an idle line, which may
oceur if ¢>1, and

(4) Cache miss, which may occur if h<i.

2.7 System Configurations

Since the cache memory i3 shared by all the processors in the

system, an interconnection network is required to connect the processors

with the shared cache memory modules. A p-by-! crossbar is assumed for

this interconnection network to simplify further discussion. Although
the crossbar can route the accepted requests to the appropriate lines and
modules, some functional units are required to accept or reject incoming

requests. Basically, the functional units are needed to resolve

SR AU e | A A U rstscovy g et

72

conflicts and maintain the status of currently busy 1lines and modules.
There exist a wide variety of possible implementations of such functional
units and a particular choice depends on the design objectives. For
instance, the functional unit required to resolve multiple access line
conflict can be implemented based on a processor priority scheme or a
round-robin assignment; and the functional unit required to store and
update busy line or module status may be readily implemented by a set of
shift registers or a proper amount of content addressable memory.
Details of these implementations can be found in [41] and will not be

repeated here.

Figure 2.7.1 shows the system configuration proposed in this thesis.
Note that there is no interconnection network required between the shared
cache memory and the main memory. ‘The wain memory is automatically
shared by all processors because the cache memory is shared. In other
words, all the information which is mapped into the cache modules on one
line could be stored in a set of main memory modules associated only with
that particular line. Whenever a cache miss occurs for some module on a
particular 1line, the new block to be fetched will be found in one of the
main memory modules associated with the same line. Therefore, a single
bus is sufficient to connect the cache modules with their associated main
memory modules. Note that more than one main memory module interleaved
by low-order bits could be attached on each line to provide high main
memory bandwidth. The bus width at the main memory and the degree of

interleaving of main memory on each line are determined to match the

required main memory bandwidth which then defines a specified block

B e

73

Pipelined

. . Processor

. ¢t : with s segments
(s streams)

P x 4 Crossbar

F—“ L.
{ J-O‘l
e e o o . Shared
* ¢ Cache
Ok
Main
: ¢ E Memory

Figure 2.7.1 Shared cache system organization.

A e = g

e ——

e o

74

transfer time, T. Therefore, only the block transfer time will be
considered as a design parameter. The specific main memory design
implementation, such as the main memory bus width and the number of main
memory modules per line, required to achieve T will not be explicitly
considered in further discussion. Since the research focuses on the
cache memory problem, the effects of lower levels of the memory hierarchy
involved with paging faults, etc., are not included here. Note also that

the buffers for write through are not shown in figure 2.7.1.

One might be concerned that the crossbar between the processors and
the shared cache memory requires longer time to access the shared cache
memory than the time needed for processors to access a private cache
memory. The crossbar indeed delays the turnaround time for every
successful cache memory request. However, the total system throughput
for a shared cache memory would not be degraded due to the crossbar if a
parallel-pipelined processor, which allows for this larger turnaround,
can be designed to provide the instruction execution rate which is
equivalent to that of a multiprocessor system with private cache
memories. It is clear that the time needed to route a request from a
processor through the crossbar to the referenced shared cache module is
overlapped with the pipelined processor cycle. The delay due to the
crossbar will not play any important role in the system performance as
long as the address hold time on the bus, a, is one., In this thesis, a
is assumed to be 1 a.d we assume no performance degradation due to

crossbar delay in a multiple-stream shared-cache system.

Recall that there is LRU replacement hardware namely an LRU stack,

R r—

75

associated with each set 1in the shared cache memory. An important
concern in the LRU stack design is speed. Since the time required for
the LRU updating process is dependent on the set size, it is desired ¢to
design an LRU stack such that the speed is fast enough for the selected

set size.

Again, many possible implementations of such LRU stacks may exist
but only two apparent examples are shown below. Since there is plenty of
time to update the LRU stacks for cache misses, only the updating for hit
requests is considered in these examples. The first scheme employs a set
of fast counters. LRU is implemented by associating a hardware counter,
called an age register, with every block in a set. Whenever a block is
referenced, its age register is set to a predetermined positive number.
At fixed intervals of time, the age registers of all the blocks in each
set are decremented by a fixed amount. The least recently used block at
any time is the one whose age register contains the smallest number.
This smallest number can be obtained by an associative search of the
counters. A special select circuit might be required if there 1is the

possibility that more thﬁn one age register has the same smallest number.

An alternative implementation employs a set of D flip-flops to
maintain the status of the blocks which currently reside in the cache and
a few logic gates can achieve the updating function. For a set
containing R blocks, that is for a set of size R, log R bits will be
sufficient to addresa any given block in the set and a total of R log R

bits are enough to keep all the necessary information for LRU replacement

operation. Figure 2.7.2 shows one example of a LRU stack with set size

TR e o

76

Hit Clock
T

I, L Y.
D

——>& :

N\ L N\ -)

5..._/}7 .__-vj 'ﬂ:::::>-d
Cc

c c
Iy T g ALy A1 D

NX NY NZ

0O
Of
F

1

Oo

Pq)(;: ()(‘ q; I|) V'()Q,(B I(’)
NY=(Y,®1,)v(Y,®1,)
NZ=(Z,®1,)v(Z,®I,)

Figure 2.7.2 An implementation of the LRU algorithm.

equal to 4. In this example, the four words of the stack are denoted as
X Y, 2, and W. Register X corresponds to the top of the stack and the
register W the bottom of the stack. Register X contains the block number
X1xo, register Y contains the block number Y1Y0, and so on. The number
of the block just accessed is available on lines I1 and Io and the number
of the least-recently-used block is available as W1wo. There are three
control signals, that 1is, NX, NY, and NZ, each of which controlé’its
corresponding block in the LRU stack. NX is 1 if the just accessed block
is not block number X; otherwise, NX is 0. NY and NZ are similar.
Whenever a request results in a hit, a hit clock is generated immediately
to control the updating process. Each of these three control signals
together with the hit clock determineAif the corresponding block should
be shifted to -the right in the LRU stack. The number of the just
accessed block is loaded into the leftmost pair of D flip-flops every
time a hit in this set occurs. The contents of the other pairs is
shifted to the right until the previous position of the just accessed
block 1is reached. The rightmost pair of D flip-flops always indicates
the number of least-recently-used block in the set associated with this

LRU stack.

Practically, cache memory control can be implemented by using
various memory devices such as RAM, CAM, or a combination of both. The
lookup tables for a set associative cache organization can be achieved in
two different forms, that is, explicit lookup table or implicit lookup

table. A set associative cache with an implicit lookup table can be

easily implemented by using RAM with a word width of R tags, where R is

78

the set size. Figure 2.7.3 illustrates this implementation with R equal
to 2. A cache word contains word i from block 1 and word i from block 2
of the given set. The tags for both block 1 and block 2 can be stored
together with the data in the same cache word. However, in this case,
the tag is repeated for each data word. This tag repetition can be
avoided if these two tags are stored in some other cache word which can
be read out simultaneously with the data. Thus, a fetch from the cache
will pull out the two data words in which the requested data could reside
plus the two tags associated with that data. The tag from a request’s
effective address is simultaneously compared to both of the tags read
from the cache directory. The result of that comparison will result in
gating word 1 from block 1 or word i from block 2, or neither in case the
data is not in the cache. Although some comparators and a multiplexer
are needed, no expensive CAM chip is réquired. The comparison itself can
be slow since the result is not needed until the cache cycle is complete.
Note also that whether an accepted request results in a hit or miss is

determined after the cache cycle has been completed.

For a set associative cache with explicit lookup tables, a
combination of RAM and CAM devices can be used. The 1lookup tables are
usually implemented by CAM because of the fast parallel associative
ssarch required; the cache modules themselves can be implemented by RAM.
Since p parallel pipelined processors issue p simultaneous requests each
STU, a centralized explicit lookup table shared by all processors will

degrade the system performance drastically due to the intensive access

conflicts at the lookup table. Hence the explicit lookup tables have to

Y T, Ay o ey -

B

TAG
from

effective
address

word1 block 1

word1 block 2

Figure 2.7.3 An implicit lookup table implemented by CAM chips.

r- E—

80

be decentralized. One part of the lookup table can be associated with
each line or each module as shown in figures 2.7.4(a) and (b),
respectively. Since very 1little time is needed to process a parallel
associative search in a CAM, it is assumed that the cycle time of a CAM i
lookup table is transparent, i.e. it is included in the address hold

time on the bus. Then, from the performance point of view, the designs

of figures 2.7.4(a) and (b) are equivalent. The implementation of figure

2.7.4(b) will give higher performance than that obtained from the
implementation of figure 2.7.4(a) if the lookup table cycle time is
greater than one STU. This difference is due to the fact that the table
on each line shown 1in figure 2.7.4(a) poses a limitation on the
acceptance of requests: each line can accept at most one request every
lookup table cycle instead of one every STU. For simpliqity, the time]
interval needed for checking whether a request is a hit or miss is |
assumed to be transparent. This assumption can be applied to both the
cycle time of a CAM lookup table or the time period needed to complete
the comparison and selection functions in figure 2.7.3. It was assumed
that no line will accept any request during a block transfer operation on
that line. Hence there 1is enough time to update the lookup table for
cache misses. A word ia the explicit lookup tables contains both a tag
and the physical address of a block in the referenced module. 1In this

case, whether an accepted request results in a hit or miss is determined

before the cache cycle starts.

s oo St et Ao o s e A e

[P SN SPURIT SRV

81

. . P
o * o o . Pipelined
* * Processors

p x g Crossbar

Explicit Lookup
Table
- Shared
. Cache
- Memory
_'Om

E Main Memory

A

(1 X]

Figure 2.7.4(a) Shared cache with one explicit
lookup table per line.

82

* *» p
¢ e o ° * Pipelined
L] [2
Processors
[] [] [
P X 4 Crossbar Explicie Lookup

1 st ¥ / Table

[::) 1 !
Shared
* Cache
. oo . |
. . Memory
Main Memory f

Figure 2.7.4(b) Shared cache with one explicit
lookup table per cache module.

e 2

83

2.8 Concluding Remarks

In this chapter, we have discussed cache memory management policies
and shared-cache memory organizations. We have shown that a centralized
lookup table is not suitable for multiple-stream shared-cache computer
systems due to potentially high lookup table access conflicts. We have
also shown that a distributed lookup tar*le for fully associative and
sector mapping mechanisms may cause a multicopy problem in the local
lookup tables and a lookup table maintenance problem. Thrashing and
deadlock may occur in direct mapping due to the high possibility of cache
block contention among streams. However, set associative mapping allows
a distributed lookup table and does not have the above undesirable
features. In addition, the set associative mapping mechanism is
cost-effective and performs almost as well as fully associative mapping
if a sufficiently large set size 1is used. We suggest that the set
associative mapping with an LRU replacement algorithm for each set be

used in shared-cache systems.

We have investigated two methods of handling write misses, namely
write allocation and no-write allocation. Several schemes of updating
the main memory have been discussed. Due to the effect of architectural
differences between shared cache and private cache on handling of
write-miss and updating the main memory, we suggest that the
write-through with buffering updating scheme and the no-write allocation
strategy be used in shared cache systems and the write-back with
buffering updating scheme and the write allocation strategy be used in

private cache systems.

AD-A124 387 SHARED CACHE ORGANIZATION FOR MULTIPLE-STREAM COMPUTER
SYSTEMS(U) ILLINOIS UNIV AT URBANA COORDINATED SCIENCE
LAB C YEH JAN 81 R-904 NOOO39-80-C-0556

UNCLASSIFIED F/G 9/2

g
s £ 2
el -

 ne—
—
——
 e——
e —

| Eyiryin

(-]

o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

— i,

84

Furthermore, the application of the L-M memory organization to our
shared-cache memory has been discussed. In order to keep the complexity
of cache memory mapping and table lookup within reasonable bounds, a
memory interleaved by sets has been introduced. Two possible
implementations of addressing interleaved by sets have been presented.
The choice between these two implementations involves tradeoffs between

the block transfer time and the amount of tag storage required.

Finally, we presented a general description of shared-cache memory
request scheduling and overall system configurations. The considerations
for realistic implementation of some hardware functions, e.g. LRU

stacks, are also discussed.

The functional parameters of a shared-cache memory design have been
specified for our purposes in this chapter. In chapter 3, the
performance of shared-cache memory systems is analyzed for two distinct

cache models. A discrete Markov approach and a probabilistic approach

are developed for both models. In addition, a probabilistic model for

private-cache systems is also developed.

R s T R T T

SRR

-
C— g
v .

e
. .

CHAPTER 3

PERFORMANCE ANALYSIS

3.1 Introduction

In this chapter, the analytic models are developed based on certain
assumptions about program referencing behavior. The assumptions which
are common to all the models of this research are summarized in this
section. Any further assumptions made for each particular model are
discussed individually as the analysis of each model is performed. The
parameters explicitly related to system performance and those used for
modeling are also examined and summarized in this section. Analytical
models for a shared-cache multiple-stream system with an implicit lookup
table are discussed in section 3.2. In section 3.3, the performance
analysis of a shared-cache multiple-stream system with explicit lookup
tables is carried out. Finally, the performance of a multiprocessor

computer system with private cache memories is evaluated in section 3.4.

In a parallel-pipelined processor of order (s,p), we assume that p
simul taneous memory requests are issued to the shared cache memory system
every segment time unit. For analytical simplicity, it is further
assumed that the addresses of the requests are independent and uniformly

distributed among the N identical cache memory modules. Therefore, for

86

the shared-cache with L-M memory organization, the probability that a
request addresses some particular module is 1/N. Similarly, since lines
are identical and independent, the probability that a request addresses a
particular line is 1/ . Since the sequence of requests made by a
pipelined processor ia. formed by interleaving requests from sp
instruction streams, each stream in the processor 1issues one request
every 8 STUs. This interleaving tends to make the randomness assumption
i of the analytical model more realistic. Also, since the number of
segments, s, is greater than or equal to the cache cycle, ¢, a memory
module which is executing a previous request from an instruction stream
would have completed its execution when the next request from the same
instruction stream arrives. Hence there is no execution overlap between
instructions of the same stream and data dependency within a stream will

not arffect the stream performance.

The assumption of independence and randomness of the reference
patterns requires that unsuccessful requests be discarded. The
independent request assumption is tested in the simulation models in

vhich real program traces are used. The method of handling unsuccessful ;

requests in the simulation models is to cause the process with an
unsuccessful cache memory request to make a non-computing (or null) pass
through the processor segments for one instruction cycle and to resudbmit
the same request the next cycle. In such a case, the process is blocked
until its request is satisfied. The simulation results are then compared

with the analytical predictions to determine the inaccuracy caused by the

random independent request assumption.

s il

P ———— e
et .—
. '

i

[T
»

ey rm————

87

Another important assumption made fer all analytical models is that
the cache hit ratio is independent of cache access conflict. Although
cache memory access conflicts indeed affect the reference patterns, the
hit ratios should not be disturbed significantly by the access conflicts
if a sufficiently large cache size is used. As with the working set
concept for a paging system, a block should reside in the cache for a
while before it is removed. This assumption separates the cache hit
ratio and the cache access conflict into two independent phenomena and
simplifies the analytic modeling significantly. The inaccuracy caused by
this assumption will also be checked by simulation and discussed in

chapter 4.

In summary, the assumptions common to all our analytic models are as

follows:

(1) The request sequence consists of independent references.
(2) Processors operate synchronously.
(3) The processor request rate, ¥ , equals one (implies s2 ¢).

(4) Cache hit ratio 1s independent of cache access conflict.

The functional parameters of a shared cache memory design were
described in chapter 2. Given this set of functional parameters, the
system performance is then dependent on many component parameters which
specify the physical sizes of the components. The following list
contains the component parameters related to the system performance of a

shared-cache multiple-stream computer systenm.

(1) Block size.

(2) Set size.

(3) Total shared-cache memory size.

(4) Number of pipelined processors, p.

(5) Degree of multiprogramming per pipelined processor, s.
(6) Number of lines within shared cache memory, £ .

(7) Number of cache memory modules per line, m.

(8) Cache memory cycle time, c.

(9) Block transfer time, T.

It is very difficult to develop a satisfactory analytic model which
contains all of the above nine parameters. However, those nine
parameters are not independent of each other and can be classified in the
following three categories: (A) those, including items 1, 2, 3, 4 and 5,
related to the shared cache hit ratio; (B) those, including items 1, 7
and 8, related to the block transfer time, 9; and (C) those, including
items 4, 6, 7, 8 and 9, related to the cache access conflicts. By using
the above relationships between parameters, the parameters required to

perform the modeling can be reduced to the following six parameters:

(1) Cache hit ratio (h).

(2) Number of pipelined processors (p).

(3) Number of lines within the shared cache memory (Z).
(4) Number of cache memory modules per line (m).

(5) Cache cycle time (ec).

(6) Block transfer time (T).

L

~ 89

Note that the total number of cache modules, N, is equal to ({ times

.. m. Due to the complexity of the architecture, the relationships between
parameters in category (A) are impossible to obtain by a purely analytic H

approach. Simulation is required to determine those relationships from

which the performance differencss between alternative configurations can

be accurately determined. Therefore, for a given set of values for the

component parameters of a shared cache memory, such as block size, set

size and so on, hit ratio is a function of the workload environment, such
as p, 8 and program behavior, and can be determined by simulation runs
with real program traces used as the input data. For analytical
purposes, hit ratio is then 1left unevaluated and 1is treated as an
independent model parameter. The analytical models are oriented toward
: , developing the probability of iQS&ﬁ&éBSS:.E*, for a typical shared cache {
memory request. The performance measurement, CPU utilization, can easily

be derived from PA and h.

The performance analysis of shared cache memory systems is carried

out using either discrete Markov models or probability based theorems.

The Markov models belong to a class of time-homogeneous finite-state

- Markov Chains (58]. The probabilistic models use a conditional
- probability concept by which bounds on performance can easily be derived.
A probabilistic model for multiprocessor systems with private cache

memories is also presented in this chapter.

.
o7 g, 4 T

90

3.2 Shared Cache Memory with an Implicit Lookup Table

A shared cache memory with an implicit lookup table stores the black
tags and data together within the cache modules which can be 1implemented
by RAM chips. In this case, whether an accepted request results in a hit
or miss is checked after the cache cycle has been completed as
illustrated in figure 2.7.3. For simplicity, it is assumed that no cache
module can accept any new request before the result of the previously
accepted request has been determined. Although the comparators and the
selection circuit (see figure 2.7.3) need not be physically built inside
the RAM chips, a cache module will be busy in the interval (t,t+c) if it
accepts a request at time t. Therefore the cache cycle, ¢, is the
minimum time period required between two successive requests accepted by
one cache module. The block transfer time T, which is a fﬁnction of
block size, main memory c¢ycle and cache cycle, 1is the time period
required to fetch a block from main memory to the cache. Since ¢ and T
implicitly characterize the speeds of cache and main memory, (¢,T) is
then defined as the cycle characteristics. Since all 1lines in an L-M
shared cache memory system are identical and independent, a single line
model, instead of a total system model, will be sufficient to analyze
system performance [41]. This line decomposition technique simplifies

the analysis of the system significantly.

A formal definition of the probability of acceptance is given below

to clarify further discussion.

o o e s

i v -

P o W ey

91

Definition 3.1.1 The gteady state probability of acceptance, P,(c,T,p),
is the steady state probability that a request issued by a
parallel-pipelined processor ¢f order (s,p) will be accepted by an (¢,m)

memory configuration with cycle characteristiecs, (c,T). O

It will be seen that s does not affect performance in this model, as
long as s 1s sufficiently large. Furthermore, the model is developed for

general ¢ and m.

3.2.1 Discrete Markov Model

Recail that a write~through updating scheme was assumed for the
shared cache memory system, no copy back is necessary for a replaced
block when a miss occurs. Hence, a cache module can start the block
transfer operation immediately after a miss has been detected. The block
transfer time, T, in this case is the time period from detecting a miss
until the block transfer operation is completed. Therefore, a module and
its associated line will be busy for T time units immediately after a
miss occurs in this module. The remaining modules on this 1line cannot
accept any new request during this block transfer period because the line

is busy.

Since there .: no queue assumed in the shared cache memory to buffer
the requests which result in cache miss, those requests have to be

rejected if the block transfer operation cannot be initiated immediately

to serve the cache miss. Furthermore, one might be concerned that a

92

cache miss on some line should initiate a block transfer operation if and
only if all the modules on that line are 1idle, otherwise the request
which results in a miss should be rejected. However, this idea may cause
a miss loop which essentially is a deadlock situation. For example,
consider two requests k1 and k, which reference modules m, and m,,
respectively. Assume that both modules m, and m; are on the same line
and both requests k, and k, result in cache misses. Suppose k, arrives
at time t and starts a cycle on m,, Less than c¢ time units later k,
arrives and starts a cycle on m,. When request k; is determined to be a
miss, module m, is busy and request k; will be rejected. Assume further
that request k1 will be resubmitted before module m, completes its cycle.
Therefore, when request k, turns out to be a miss, module m; is busy
again and request m, will also be rejected. The same process may
continue forever and these two requests lock each other out. 1In order to
avoid the miss loop, a block transfer operation is initiated immediately

after a miss is detected.

Note also that there may be some busy modules on a line when a miss
occurs on that line. All requests in process within busy modules on a
line will be aborted when an earlier request causes a cache miss on that
line. These requests are revised to be considered as rejected requests

for simplicity of analysis.

Definition 3.2.1.1 The rejected requests corresponding to aborted cache

cycles on a line caused by a cache miss on that line are called aborted

requests. a

S bt e b A

93

First we develop the line state space of the shared cache memory
syscem for the case p=1. In this section, we assume ¢> 1 since c=1 is

degenerate and trivial.

Definition 3.2.1.2 The module state at time t is
= ¢(null), if the module is idle at t,
={r}, if the module is busy at t and has been busy for r STUs,

where r is an integer such that 1 Sr S¢c+T-1. _ |

If 1<p<c¢c-l, then the module is busy at t for the cache cycle
because it accepted a request r STUs ago. However, if ¢S r =c+T-1, then
the module is busy at t for the block transfer operation because it
accepted a request r STUs ago which resulted in a cache miss. Observe
that the state of a module which accepted a hit request, i.e., a
successful request, ¢ STUs ago is ® . If a module accepts a request
which results in a miss, this module will then be busy for c¢+T STUs.
Since there are m modules on a line, the states of all m modules on the

1line represent the state of the line.

Definition 3.2.1.3 A line state, A(t), at time t is the set union of

8ll module states at time t for all modules on the line in question. For

convenience, the line state is enclosed in "()", O

Notice that only nonnull states of modules on the line appear

explicitly to specify the state of the line. The line state only

R 1t ¢ -

NIRRT g A 1 . AR

TR R e LT T M

identifies whether some module on the line is in each state, and not

which particular modules are in which state. Specific module information
is not needed due to the uniform and independt request assumption.
Furthermore, there can be at most one module on a 1line in any one
particular nonnull state. Thus there are no repeated nonnull module
states and a simple set union of module states gives the line state. 1f
there is more than one busy module on the line at time t, the module
states are separated by commas. For instance, consider the line state of

a 1line at t which has two busy modules on it, one of which accepted a

request one STU ago and the other, two STU ago. The line state at t for-

this 1line will be denoted by (1,2). For convenience, the module states
of a line state will be listed in ascending order of busy time. Hence
(3,1) will be written as (1,3). Moreover, if all modules on a line are

idle at t then the line state is denoted by the empty set, ¢ .

Given the state of the line at t, it is necessary to determine the
line state at time t+1. To make this determination, it is necessary to
understand the change of module states with time. Given the module state
of a module at time t, the module state at time t+1 can be evaluated if
it 1is known whether a request is made to and accepted by that module and
whether the previously accepted requests on the same line result in hits
or misses. Hence for a given module state, the next module state can be

obtained as follows.

Definition 3.2.1.4 If the state of a module at t is ¢ , then next

module state (at t+1) is

- T g,

!
|

Pann)

[J_y)

95

2{1}, if a request which addressed the module at t was accepted, or
= ¢ otherwise; i.e., either no request addressed the module at t, or a
request which addressed the module at t was rejected due to a busy

line collision. O

Therefore, a module remains in the null state unless it accepts a
request at time t whereupon it will become busy and remain busy either
during the interval (t,t+c) or during the interval (t,t+c+T) depending on
whether this accepted request results in a hit or miss, respectively.

For a busy module, the next state can now be evaluated as follows:

Definition 3.2.1.5 Given that the state of a module at time t is ({r},

where r is an integer such that 1 sr Sc+2-1, the next module state is

={r+1}, 1if r <c-1 and no other busy module on the same line detects a
miss, or 1if c«1<r <T+c-1, or if rsec-1 and the module in
question detects a cache miss, or

-3, if r=c+T-1, or if r=c-1 and a hit occurs in the module in
question, or if r<c-1 and a miss 1is detected in aﬁy other

module on the same line. 4

Observe that a busy module cycle will be aborted if any other module
on the same 1line detects a miss before this module completes its cache
cycle. The next state of an aborted module is then & regardless of its
current state. For a non-aborted module, once it accepts a request, it

goes through the state sequence {1}, {2},..., {c-1}, @ , if the accepted

request results in a hit; otherwise a miss is detected when the module is

96

in state c-1 and it goes through the state sequence {1}, {2},...,{c=1},
{e}yeeuy{ceT=-1}, @ . Hence the maximwm utilization of a module is one
accepted request per ¢ STUs. Only a module in the module state ¢ can
accept a request. It need not be known whether any request addressed the
module in order to evaluate the next state of a busy module. Any request

made to a busy module is rejected.

Determining the next line state is as straightforward as determining
the next module state. However some definitions are needed here to

clarify the presentation.

Definition 3.2.1.6 1If & r & A(t) such that ¢ <r sc+T-1, then A(t) is a

busv line state, otherwise it is an {dle line state. O

Definition 3.2.1.7 An idle line atate, A(t), is a potential acceptance

state if 1€ N(t), otherwise it is a popacceptance state. Furthermore,

an idle line state, A(t), is called a checking state if c-1 & A(t). [J

The request corresponding to the module with state 1 in a potential
acceptance state is a potentially accepted request. Whether a
potentially accepted request is an accepted request is dependent on
whether all the other busy modules on the line are processing hits. If
any other busy module in)\ results in a miss, this potentially accepted
request will be aborted and becomes a rejected request. Therefore, a

potentially accepted request is an accepted request if and only if all

the other busy modules in)\ are processing hits. Obviously, the

T T

ponn'y

C e e o

[y

97

potentially accepted request in A =(1) 4{is an accepted request, A
checking state can be either a potential acceptance state or a
nonacceptance state, At the checking state, a result of hit or miss for

the module with state c-1 is detected.

Note that there are at least two possible state transitions from a
particular idle line state, A(t): one is to a potential acceptance state
and the other is to a nonacceptance state. Three possible state
transitions exist only from a checking state: If a hit results, the state
may go to either of the two next idle 1line states mentioned above;
otherwise it goes to the next busy line state A=(¢). Only two posssible
state transitions exist from nonchecking idle line states. For a busy
line state, the line is busy for the block transfer operation and will
only make a transition to its successor busy 1line state (or the null

state if A=(T+c-1)) whether or not a request addresses the line.

In order to develop the Markov model required to analyze the shared
cache memory confiict problem on a line, the line state space is
investigated. However, we need to know the probability of transition
from one state to another in order to compute the probability of being in
each state. The cardinality of a state is useful in obtaining the

transition probabilities.

Definition 3.2.1.8 The number of elements or the cardinality of a line

state A(t), [A(t)|, 1is the number of nonnull module states in the line

state. o

KT

98

Note that the cardinality of a busy line state is one. Since all
the aborted modules on one line have the module state & and will not be
listed, only the module which causes the cache miss will be listed in the
line state. Although the m modules on one particular line may be all
involved in a block transfer operation at the same time if the
implememtation of figure 2.5.2(b) is used, a busy line state with one
element is sufficient to describe the line state because none of the n
modules on the line can accept any new request during the block transfer

operation.

Recall that when a request references an idle module on an idle
line, the request is potentially accepted, causing the line state to make
a transition to a potential acceptance line state. Similarly, a line
state makes a transition to a nonacceptance 1line state if no request
referenced the line or a request which referenced the line was rejected.
The transition probabilities can then be obtained with the aid of the

foilowing definition and theorems.

Definition 3.2.1.9 The probability of transition, Py 3 is the
?

conditional probability of going from a given line state ki , at time t,

to its successor line state Kj y at time t+1. Rewriting this statement

in probability notation, pi,J=P(Aj /M) 0

Theorem 3.2.1.1 The prodbability of a request being rejected due to
multiple access 1line collision with one or more of the p-1 other

simultaneous requests is

1.p,1¢
= - - 1-— -
P 1-01-¢(7) P
Proof': Since there are £ lines in the shared cache memory system, a

request will reference a particular 1line with probability 1/4. Thus
(1-172)P is the probability that no request references a particular line
and 1=-(1=1/2)P is the probability that there is at least one request to a
particular line. The expected number of distinct lines referenced by p
requests, i.e. the line bandwidth, is then [1-(1-1/2)Plz . The
probability P, is then 1-line bandwidth/p. 0

Note that 1-P, is a closed form representation of Ravi‘s

1
results{37]. Chang [59] showed the equivalence of 1-P, and Ravi’s
result. Strecker [19] derived the same result by using a different

approach. Briggs [41] also proved this result.

Lemma 3.2.1.1.1 The cache memory request rate seen by a particular line

in the shared cache is

P(I'Pl) l1.p
= mmse— 1 - 1“‘ -)
q 7 -

Proof: From theorem 3.2.1.1, it is clear that p(1-P1) requests pass

through the crossbar every STU. These p(1-P1) requests are the requests

seen by the £ lines. Since they all reference different 1lines and all

100

lines are identical, the probabdility that a particular line will be
referenced by one of these requests, i.e. the request rate seen by this

particular line, is p(1-P,)/f = 1-(1-1/4)P 0O

Theorem 3.2.1.2 The probability of transition from an idle 1line state

(t) to its successor potential acceptance state is

m-‘k[
Pa(l) = qh, if c-lg 2
m= |1
= T 9, otherwise

Where |A| is the cardinality of the line state X\(t).

Pr¢> : Suppose that the idle line state, A(t), is not a checking state.
Then request which addresses a line in state A(t) will be potentially
accepted if the request addresses an idle module on the line. The number
of idle modules on the line represented by A\(t) is m-I2|, where |)] is
the number of busy modules on the line. Given a request to the line, the
conditional probability of requesting any one of the idle modules on the
line is (m-I\1)/m. Since the probability of requesting the 1line 1is q,
the probability of a request referencing some idle module on a particular
idle line is q((m~| A{)/m]. Therefore, P,z(m-1 A|)q/m if the referenced

idle line state, A (t), is not a checking state. O

Otherwise, \(t) is a checking state and P.:[(m-l A{)/m]lhq because a

request is potentially accepted at a checking state if and only if the

101

module with state c-1 results in a hit and the conditions above also

[e]

apply.

iy

Corollary 3.2.1.2.1 The probability of transition from a checking

-4

state, A(t), to its successor busy line state is

.- Pb(k) =1-h

* Proof: By definition, an idle line state makes a transition to its
successor busy line state if and only if the idle line state, A(t), is a

checking state and a miss results. O

Theorem 3.2.1.3 The probability of transition from an idle line state,

A{t), to its successor nonacceptance state is

- Pn(k) =h-P (2, if c=1g A

=] « Pa(X), otherwise

; Lroof: Note that P_(AM)+P,(M)=1 for all the idle line states except

the checking states. For a nonchecking idle 1line state, nonacceptance
}_ implies either rejection of a request to the line or no request arrival
{- to that 1line. For the checking states, P.(\).pb(X)+pn(Ay=z1. &

checking state makes a transition to its successor busy line state if a

I. miss results, a transition to its successor nonacceptance state or its

successor potential acceptance state if a hit results. Since Pb(A)=z1-h,

LS et A i bz

s e Sl et

1 e asts

102

Ph{ 2)=h=Py(A) follows. 0

Theorem 3.2.1.4 The probability of transition from a busy line state,

2 (t), to its successor busy line state (or to @ if A(t)=(T+c-1)) is one.

Proof': Since 3 (t) is a busy line state, there is no successor potential

acceptance state hence the result follows.

For given cycle characteristies, (¢,T), a line state diagram is
readily constructed by following the above definitions and transition
probabilities. For example, a line state diagram for cycle
characteristics (¢,T)=(3,10) and m =2 is shown in figure 3.2.1.1, where %

indicates the potential acceptance states. a

Theorem 3.2.1.5 The total number of distinct 1line states for cycle

characteristics (c,T) is

Total number of distinct line states = 2c-1 + T, form 2 ¢-1
. c-1
= Z({) + T, for m » c-1
0<si <nm

Proof': For m 2¢-1, every idle line state except the null line state and
the checking states can generate two new successor states: one is the

next nonacceptance state and the other is the next potential acceptance

T T P AT

(¢, T)=(3.10)

Figure 3.2.1.1 Lline state diagram for shared cache with
an implicit lookup table and cycle characteristics
(e,T) = (3,10).

S R LN T s -

103

v, UL e s = - - 1 ;1

T e £ L A R
.

104

state. Therefore, the idle 1line states excluding the null line state
actually form a binary tree structure with tree height c-2. The number
of states contained in this binary tree is 2°'1-1. (T+1) accounts for
the T busy line states plus one null line state. Hence the total number
of distinct states is 2°"1+T ‘f‘or m <c-1. The number of busy line states
is still T form c¢-1. However, for m <c-1, there are at most m busy
modules in each idle line state. Therefore, the total number of distinct

idle line states is p c-1

0<i Sm (i). O

The probability that a particular line accepts a request, denoted as

LY

section. The following theorems help us to evaluate the system

(e,T,p), can be found by solving the Markov model developed in this

probability of acceptance, P,(e,T,p), for the shared-cache L-M memory

organization with cycle characteristies (¢,T).

Theorem 3:.2.1.§ For the L-M shared cache memory the steady state
probability of acceptance, PAL (e, T,p), that a particular 1line at a

particular STU accepts a request is

ZE plrl-t p
A€ {a]18n}

PAL(QQT’p) =

where pA' is the probability of being in line state A.

Proof': A potentially accepted request is an accepted request if all the

other busy modules on the same line are processing hits, otherwise this
potentially accepted request will be aborted. Therefore, the probability
that a particular potential acceptance state, A(t), accepts a request is
the probability of being in that state times the probability that all the
other busy modules on the same line result in hits. The latter
probability is simply h'hl-l, where |)\| is the cardinality of the 1line
state)(t). Then, PAz(c,T,p) is this probability of accepting a request
summed over all the potential acceptance states of the 1line being

modeled. O

Theorem 3.2.1.7 The steady state probability of acceptance of a

particular request in the L-M shared cache memory organization is

PA(C:T:P) = "‘PAZ(C »T, P)/P

Proof': All the £ lines of the L~M shared cache memory organization are
identical and independent. Hence zPAz(c,T,p) is the expected total

number of the accepted requests per STU, i.e. pPA(c,T,p). O

Note that the 1line state diagréh generated by the Markov model
developed in this section is an ergodic Markov Chain because every line

state can be reached from any other line state. Therefore, the existence

of a unique equilibrium solution for this model is guaranteed [58].

106

Corollary 3.2.1.7.1 The probability of success of a particular request

in the L-M shared cache memory organization is

PS (¢,T,p) = h QA (c,T,p) 0

Obviously a request is successful if the request is accepted and results

in a hit.

The example of figure 3.2.1.1, (c,T)=(3,10), can then be solved as

follows.

Let Px denote the probability of being in the line state \. There
are only two potential acceptance states shown in figure 3.2.1.1, namely,
state (1) and state (1,2).

Hence PAL(C’T’p) = PA£(3,10,p) =P + hpl’2

From figure 3.2.1.1, the following equations can easily be obtained.

m-m
by = (1=a)py + h(—jfﬂ) P, +Pyo (L
mhq-h
P, = ap, + = . @)
m-mq+q m-mq+2q
P ® T P tR(—3 VP2 3)
Py = (1-h) [p, + 91,21 “)
mq-q mhq-2hq
p1,2 = m p1 + m P1,2 (3

From equation (5)

m-mhq+2hq

(

107

* mq-q
P =
1,2 p-mhq+2hq

Py

From equation (2)

mhq-hq m-mq+q+hq .
w®y =Pyt (T (SoRgEng P _.f

(n” ~2u°hq+3hqu-2mhq”+u’hq’ -mh g +hq 4 7q) p,

Py nq (m-mhq+2hq)

Note that p¢ + p1 + P, + pl’2 + Tp3 =1 3

Solve for Py

qm (m-mhq+2hq)

p =
1 (1-2hq+2q+qT-Thq)m?+(3hq-h>q> +hq>+Thq>~Th>q >)mthq > +h2q>

£qN (N-Nhq+2h4q)

Py * 2 2.22,.,22 22 222
1 (&-2h£q+2£q+4q’r-'1‘h£q)N2+(3h4 q-£"h"q“+h4 " q"+The"q"-Th £ q)N+

3hq2 + £3h2 qZ

.

.: 4qN (N-Nhq+2hiq)
y Py = A

‘ From equation (3)

m-mq-+q (mh-mhq+2hq) (mq~q)
pp, = [=3 + m(a-ahaZha)) P1
m-mq-+q+hq

P = m-mhq+2hq Py

Po————,
1 .

From equation (&)

n-mq+q-+hq mq-q
Py * UM Tkt Trmhewhg | P :
(1-h) (m+hq)

Py * m-mhq+2hq P

<o — e g s e S e 08 G VO S 110 MR % e, s
. . .
. . L} . Al . .

108

LqN (N+hiq)
Since PAI, = p1+hp1’2 = —_A— s

and ‘PAz = pP, ,

E(I-PI)N(N+h£q)

then PA = 7 ’

2

vhere A = ({+124q-12hLq)N2+(3h42q-11n% 122 +11n42 g2)N+43%h (1+h),

and (1-P,) = [1-(1-1/4)P14/p.

Only one parameter, ¢, instead of both ¢ and T, needs to be given in
order to construct the Markov state diagram and obtain the closed form
solutions. For example, if the state (12) in figure 3.2.1.1 is replaced
by (c+T-1)=(T+2), then a line state diagram for (e,T)=(3,T) is obtained.
By going through the same computation process, a closed form solution

which contains T as a parameter can be obtained.

As can be seen from theorem 3.2.1.5, the number of states in a line
state diagram increases with both ¢ and T. The total number of distinect
line states increases 1linearly with T but exponentially with c.
Therefore, for a large value of ¢, it 1is computationally tedious ¢to
obtain the exact solution. In practice, cache speed should be very fast
in order to match the processor speed. Hence reasonably small values of

¢ should be sufficient to model all important cases.

3.2.2. Probabilistic Model

No closed form solution for PA(c,T,p) exists for general (c¢,T). We

ey

h——_————- 5
¥

109

must kn~ 1 the value of ¢ in order to solve the Markov state diagram for
the probability of acceptance, P,(c,T,p). The technique used requires
the computation of the steady state probability of being in certain line
states. In this section, an alternative approach, which can give more
insight into the effects caused by individual blocking conditions, 1is

discussed.

In chapter 2, it was shown that a request may be blocked for one of
four different reasons. For convenience, those four reasons are repeated
here. A request made to the shared cache memory system may be blocked

due to

(1) Multiple access line collision (only if p >1),
(2) Busy line collision (only if h«1 and T >0),
(3) Busy module collision (only if ¢ >1), or

(4) Cache miss (only if h <1),

Recall that the aborted requests, introduced in the 1last section,
are considered as rejected requests. For conceptual simplicity, the
rejections of those aborted requests are classified as rejections due to
busy line collision in the following discussion. Therefore, the busy
line collision actually includes the rejections of a request referencing
a busy line and being aborted by a miss of an earlier request on the same
line. Since the possibility of a request being aborted is considered in

the busy 1line collision, the rejection due to busy module collision is

only applied to nonaborted requests. In other words, not every busy

. o ot - b e AEL v AT o e

110

module is affected by the busy module collision. Those busy modules on
an idle line will not be affected by the busy module collision if any one
of them results in a miss since an incoming request will be aborted in
this case. Hence only those busy modules on an idle line all of whose
busy modules result in hits affect the busy line collision. For
convenience, those busy modules which affect busy module collisions are
called ©blocking modules. By this modification of the previous
definitions of busy line and busy module collisions, the above four
blocking factors can still be applied in the following discussion without

defining new terminology.

Let P1, Py, P3 and Py be the probabilities of blocking of a request
due to the above four events respectively. Then the probability of a
request being blocked by the shared cache memory system can be obtained

by considering mutually exclusive and independent blocking events.

Theorem 3.2.2.1 The probability of blocking a request issued to the 1.4

shared cache memory system whose cycle characteristics are (c¢,T) is

PB'P1+(1-P1)P2+(1-P1)(1-P2)P3+(1-P1)(1-P2)(1-P3)P4 0

Notice that 1-?1 is the probability that blocking does not occur due

to event i.

Corollary 3.2.2.1.1 The probability of success of a request made to the

L~M shared cache memory whose cycle characteristics are (¢,T) is

o ——

Pg(e,T,p)=1-Py(e,T,p) a

Obviously an accepted request results in a cache miss with
probability 1-h. Hence P,z1-h and Pg= h(1-P1)(1-P2)(1-P3). Note that
P1 is given in Theorem 3.2.1.1. The probability of acceptance,
Pple,Typ), 1is then (1-P4)(1-P;)(1-P3) by corollary 3.2.1.7.1. For
brevity ?,(e,T,p), Pglc,T,p) and Pgle,T,p) will sometimes be written as

PA, Pp and Pg respectively.

A request will be rejected due to busy line collision if it has no

multiple access line collision, but references a busy line.

Lesma 3.2.2.1 The probability of a request referencing a busy line (or

being aborted by a previous miss) is . |

(T'l-c-l)(l-h)pPA

2 Y/

Proof': A potentially accepted request will be aborted by any other busy

module which results in a miss on the same 1line while the potentially

accepted request is still in process. This rejection is considered as a
busy line rejection. If a busy module with the checking module state,
c-1, results in a miss, this module will not only cause the line to be
}' busy for the following T time units but will also cause rejection of all
the requests potentially accepted by that line during the last c-1 time

i units. Therefore, a cache miss occuring on a line actually has the

effect of Dblocking all requests to that line for T+c-1 time units. 1In

112

other words, assuming that the line busy checker has the ability to 1look
forward such that when the line first accepts a request which will result
in a miss, the line becomes busy immediately after accepting the request
and remains busy for T+c time units. Therefore, the expected number of
busy lines, E(BL), is the expected number of accepted requests which will
result in misses over a period of T+¢-1 time units. Under the
independent request aasumption, we have E(BL) = (T+c-1)(1-h)pPA. The

probability, P, = E(BL)/L. |

Corollary 3.2.2.1.2 The expected number of idle lines is

) = £ -(expected number of busy lines)

idle

"

4 =(T+c-1)(1-h)pP,

£ (1=P,). O
The computation of the probability of referencing a blocking module

on an idle line, P3, is not always straightforward. However, P3 can be

generalized by the next Lemma.

Lemma 3.2.2.2 The probability of referencing a blocking module on an

idle line is

- E(BM/IL
3 EM/IL)

Where E(BM/IL) is the expected number of blocking modules on idle lines

e ot 1+ sy e

e ——

AP

13

and E(M/IL) is the expected number or'modules on idle lines. Notice that

E(M/IL)=Ly 41 m =Am(1-P,)=N(1-P,). O

The derivation of E(BM/IL) for given (¢,T) can be made from the line
state diagrams. 3Since all £ lines are identical and independent, the
line state diagrams for all £ lines are identical and independent. Hence
we can model the entire system by modeling one line. At steady state, if
p requests are 1issued, PPA requests are accepted by the system. These
accepted requests cause the addressed 1lines to make transitions to
potential acceptance states. Since the request references are uniformly
distributed over the £ lines, the accepted requests will be uniformly
distributed over all { lines. The following definitions are made to aid

in the derivation of E(BM/IL) for the system.

Definition 3.2.2.1 For the system, E(A) is the expected number of lines
at any time instant which are in the line state X. O

Definition 3.2.2.2 S(e¢,T) is the set of nonnull idle line states in the

line state diagram for cycle characteristics (e,T), i.e.

S(e,T) ={ Al \¢¢ ¢ and if r & A then r .c} 0O

Lemma 3.2.2.3 At the steady state, the expected number of accepted

requests per STU of a whole system with cycle characteristies (c¢,T) is

e Sy erverT . PSS T

Be AL e i

114

PP, = Z hm'l E(\)
A e {a|1eny

Proof: Multiplying the equation given in theorem 3.2.1.6 by ¢ gives

LP

Y L3 2 T
AL(c,T,p) = h pk

r & {a]1ea]

Then, substituting E(A\) for lpx , using Definition 3.2.2.1, and pPA for

lPM s using Theorem 3.2.1.7, this lemma follows immediately. 0

Lemma 3.2.2.4

s/ =) M sy

A€ S(e,T)
Proof: The expected number of modules on lines with nonnull idle line
states is
-
) CEQ) Al
A€ S(e,T)

However, some of those modules may not affect busy module collisions.
Only blocking modules affect busy module collisions. The busy modules on
a line are blocking modules if and only if they all result in hits.
Otherwise, an incoming request to this line will be aborted by some busy

module which results in a miss on this line. Thus hh‘l must be used as a

multiplicative factor in the above formula. -

e P S s R A 2t o M

115

The probability of acceptance, PA(Q’T,p), of the cycle
characteristics (3,10) can readily be obtained by using the probabilities

for the four different blocking factors developed in this section.

From figure 3.2.1.1 and lemma 3.2.2.3
E(1) + hE(1,2) = pPA (1)

Let Py denote the steady state probability of being in state A. Since

tpx = E(\), then the relationships between Py and pj are also the

relationships between E(i) and E(j).

Therefore,
mq-q
E(1,2) m-mhq+2hq
and
m-mq-+q+hq
EQ) = a-mhqi2hg E(1) '

Substituting for E(1,2) in equation (1),

m-mhq+2hq
E(1) = athq pPA
From lemma 3.2.2.4
E(BM/IL) = hE(1) + hE(2) + 2h°E(1,2) @)

Substituting for E(1l), E(2) and E(1,2) in E(BM/IL),

2hm-mhq+hq+h2q+h2mq
E(BM/IL) = o+hq pPA
From lemma 3.2.2.2
E(BM/IL)
Py = N(1-P,)

. 2hm-mhq+hq+h q+h’
3 N(1-B,) (m+hq)

116

From lemma 3.2.2.1

(T+e-1) (1-h)pP,
P, = o
2 4
12 (1-h)pP,
)

Substituting for P2 and 93 in

PA =- (l'Pl)(l-PZ)(l-P3)
and solving for PA’ we have
qm(m-mhq+2hq) +qmwh (mq-q)
P =
22

! A (1-12qh+12q)m2+(3hq-11h2q2+11hq2)m+hq2+h q

l(l-PlzN(N+th)
A

vhers 0 = (4+124q-12hiq)N2+(3hs2q-11n242 2 +11n%q%) N+e>qPh (1+h).
Note that the result above is identical to the result obtained in

last section.

[P SN S o 1~ o - -t

Pt

117

Given a shared cache memory organization and a workload, the hit
ratio, h, of such a system can be obtained from simulation. The
probability of acceptance, P,(c,T,p), can be obtained from the analyses
developed in these last two sections. The performance measurement, i.e.,

CPU utilization, is then given as follows.

Theorem 3.2.2.2 The CPU utilization, Cu, for a shared cache memory with

implic;t lookup table is

1
Cu= 1
N + (1-h)T"
A

T
" o ———
where T [s] .

Proof: Let T" Dbe the block transfer time relative to pipelined
processor cycle time, s, i.e. T":fT/s]. Recall that an unsuccessful
request will cause the corresponding processor to make a null pass, i.e.
a noncomputing pass, through one cycle. Hence the total number of null

passes for each satisfied (successful) request is

" _p y2 Ry
PA(l_h)Tu_,.(l_PA)PA[1+(1-h)T]+(1 PA) PA[2+(1 h)T]+--..

‘2
=(1-h)T"PA[1+(1-PA)+(1-PA)2+...]+(1-PA)PA[1+2(1-PA)+3(1-PA) 4]
1 ,d) .
n(l-h)rr'PA(l- I_PA)"'(].'PA)PA\ d(l_PA)[1+(1‘PA)+(1'PA) +-...]}
d 1
=(1-0)T"+(1-F)P, d(l-PA)[1‘(1'PA)]

I-PA

=(1=h)T"+
A

1
=(1-h)T"+—-1
Py

1l
where (Er'-l) is the penalty for the access conflicts and (1-h)T" is

A
the penalty for a cache miss. Therefore, the total number of passes

a request must take is

1 1
(1-h)T"+(z—=-1)+1 = = +(1-h)T"

P P

A A

1
Thus Cu = 1
== +(1-)T" a
A

Note that this formula does not consider the situation in which
processors have to make an extra request to obtain the data from cache
after a block transfer operation has been completed. However, this
formula is still applicable to the system in which an extra request is
required because h can be adjusted. In fact, for a high performance
system, 1i.e. high hit ratio, the performance difference caused by this

one extra request is negligible.

The probabllity of acceptance, P,(c,T,p), for the cases c=1, 2, and
3, is listed in Appendix A. For ¢ >3, the computation becomes enormous
and the result is extremely complex. In the following section, simpler

upper and lower bounds for PA(c,T,p) are derived to provide a rough

prediction of the perfogmance.

¢ e e, E————e s

3.2.3 Bounds on P'(glzln)

It was seen in last two sections that obtaining P,(c,T,p) for large
values of ¢ is a formidable problem. However, upper and lower bounds can

be obtained for P,(c,T,p). These give a rough estimate for design

purposes.

Theorem 3.2.3.1 An upper bound on the expected number of blocking

modules on idle lines for a given (4,m) is

(c-1)pPs

Proof; Here (c-1)pPg is the total number of successful requests during

last c-1 time udits, i.e. the total number of busy modules. However not
every busy module resulting from a successful request is a blocking
module, For a line state that contains more than one nonnull element, an
incoming request will be aborted due to a miss occuring in any one of the
busy modules in this line state. This rejection is considered as a busy
line collision. The probability of this rejection is included in Pe, not
in 93. Nevertheless (c-1)pPS includes those busy modules and therefore

overestimates E(BM/IL). O

For example, the expected number of blocking modules on idle lines
for ¢=3 is

E(BM/IL)=hE(1)+hE(2)+2h%E(1,2) (1)
By Lemma 3.2.2.3

E(1)+hE(1,2)=pPA

120

Then hE(1)+h2E(1,2)=pPs
In the steady state, the total number of successful requests during each
STU 1is equal to the total number completed cache memory cycles resulting
in hits.
Hence

hE(2)+hE(1,2)=pPs
By theorem 3.2.3.1 the upper bound of E(BM/IL) is (c-1)pPS=2pps
and adding the two equations above,

2pPg=hE(1)+hE(2)+hE(1 ,2)+n%E(1,2)

=hE(1)+hE(2)+2h%E(1,2)+(1-h)hE(1,2) (2)

The difference between equation (1) and equation (2) is the last
term, i.e., (1-h)hE(1,2), in equation (2). This term shows that one
blocking module is counted in the upper bound for state (1,2) when one
module is processing a hit and the other a miss. Since the request of
module in state 1 cannot be accepted if module in state 2 is processing a
miss, the module in state 1 must be processing a miss and the module 1in
state 2 a hit. However, the nonnull modules on a line are blocking
modules if and only if they are all hits. Hence (1-h)hE(1,2) is the

amount of overestimation made by (c-1)pPS.

Note that an idle line state)\(t) has |A| blocking modules if and
only 4if those |\| nonnull elements all result in hits, otherwise no busy

module on this line is counted in E(BM/IL).

Corollary 3.2.3.1.1 For ¢ <2 or m=1,

121
E(BM/IL)=(c-1)pPg 0

For ¢<2 or m=l,there is no line state with more than one nonnull element.

Therefore, no request will be aborted by any other request on the same

line and no overestimation of E(BM/IL) will be made by (c-1)pPs,

Corollar +2+3.1.2 A lower bound on the probability of acceptance for
zorollary

a given (Y,m) is

lN(l-Pl)

P
A 2N+ NP(L=P,) (1-h) (T4c-1) + Lph(1-P,) (c-1)

- 1-[l-1- L P L |
where P1 1-{1-(1 1)] P [

This Corollary follows directly by substituting (c-1)pPs for E(BM/IL) in
P3 and then plugging the formulas for P2 and P3, i.e. lemmas 3.2.2.1 and

3.2.2.2 respectively, into (1-?1)(1-P2)(1-P3).

Theorem 3.2.3.2 The maximum performance memory configuration for any

(e,T) is (£,m)=(N,1) and for this configuration

N(I-Pl)

A7 N+ p(1-P))(T(2-h) + (e-D)]

Proof': It is trivial to show, since increasing £ cannot decrease

performance, that the maximum performance memory configuration is

ek | AR i B 8 4 A BN 1 £ e 1 i Tt 5 - e . | .. -
- ettt M it i e 02

122

@,n)=(N,1). Figure 3.2.3.1 shows the 1line state diagram for 4=N. i

Notice when 2z=N that m=1 and an idle line cannot accept a request unless ;

d the module on that 1line is idle. From corollary 3.2.3.1.1,
E(BM/IL)=(c-1)phP,, Hence P3 = (c=1)phPy/N(1-P,). Then plugging the i
’ formulas for P2, i.e. lemma 3.2.2.1, and for P3, i.e. lemma 3.2.2.2,

into the equation PA = (1-P1)(1-P2)(1-P3) and substituting N for ! gives

ik skt b b <

|
5 N(1-P) ;

P, (¢,T,p) = N+ P(l‘Pl)[T(l'h) + (c-1)] ° -

Although (£ ,m)=(N,1) is the maximum performance configuration, this
configuration is often undesirable for 1large N because of the cost

incurred by the increased crossbar size, p x 2.

2

Corollary 3.2.3.2.1 The minimum performance memory configuration for
any (e,T) is (,m)=(1,N) and the lower bound P,(e,T,p) for this ¥
configuration ia

N |
Py = DIN(T+e-Th) - h(c-1)(N-1)] "

; Proof': It is also trivial to show that the minimum performance memory
configuration is (,m)= (1,N). Using E(BM/IL)=(c-1)phPA in Pg, this |
corollary can easily be obtained by plugging the formulas for P2 and

P, into the equation P, = (1-?1)(1-92)(1-93) and substituting N for m. [J

|
|

3

1-q

& 19,0192 .. Aoy by Ly Ly (e

Figure 3.2.3.1 Line state diagram for shared cache with
an implicit lookup table and m = 1.

123

e s e

@t it kst gt b

124

3.3 Shared Cache Memory with Explicit Lookup Tables

A shared cache memory with explicit lookup tables stores the block
tags and data separately in distinct memory units. The lookup tablea
contain not only the block tags but also the physical block addresses and
the specific cache modules to which they refer. CAM chips are usually
used to implement these lookup tables because of the parallel associative
search required. The cache module itself can be implemented by RAM
devices. As stated in section 2.7, part of the explicit lookup table can
be associated with each line or each module. Both these organizations
give the same performance if the cycle time of the lookup table is
transparent. The organization of figure 2.7.4(a), i.e., an expliecit
lookup table associated with each line, is chosen for analytical modeling
because of its c¢leanness of presentation. Note that in this case,
whether a request results in a hit or miss is determined before the
actual cache cycle is initiated. Hence only hit requests need initiate

normal cache cycles.

For this model, a different cache request scheduling strategy is
assumed. A request which results in a miss will initiate the block
transfer operation if and only if all the cache modules on the line are
idle, i.e., the line is at the null state, otherwise this request will be
rejected. In other words, the hit requests have higher priority for
being served by the shared cache memory than the requests which cause
misses. This request scheduling will not cause the miss loop situation

as discussed in section 3.2.1 because a request is known to be a hit or

miss before any later request can be accepted by the same line.

A

e ey e

S = e T T > B Semy

125

Therefore, all the accepted requests will finish their cache cycles
without being aborted and every busy module is a blocking module. The
block transfer time, T, in this case is the time period from when a miss
is detected on a 1line in the null state until the block transfer
operation is completed. All the currently busy modules on the line have
to complete their cache cycles before a block transfer operation can be
initiated on the line. A request resulting in a miss to a line which has
at least one busy module on it, is simbly rejected. Therefore, a cache
module will be busy in the interval (t,t+c) if it accepts a hit request
at time t and a line will be busy in the interval (t,t+T) if a miss

occurs on a line with no busy module on it at time t.

The analytical approaches used to model the shared cache memory with
an implicit lookup table will alsc be applied to the shared cache memory
with expiféit -lookup tables. Some definitions have to be modified and
some results have to be rederived. Those definitions and results
developed in previous sections which still can be applied in this case
will not be repeated in ihe following discussions. Let PAh(c,T,p) denote
the probability of acceptance for hit requests, i.e. the fraction of all
hit requests which are accepted and PAm(c,r,p) similarly be the
probability of acceptance for miss requests, i.e. the probability that a

miss requeat initiates the block transfer operation.

Since a miss request can be accepted only if the referenced line is
in the empty state, a miss request is more likely to be rejected by cache

memory than a hit request. This unequal probability of rejection for

miss and hit requests causes a biased hit ratio seen by the cache memory

126

system. The effect of this biased request scheduling on hit ratio is

discussed in section 3.3.3.

3.3.1 Discrete Markov Model

Again, in this section we aasume ¢ >1 since c¢=1 is degenerate and
trivial. Also, it is assumed that the cycle time of the lookup table is
transparent. Thus, the lookup tables do not pose a limiting constraint

and are not explicitly modeled in this section.

Definition 3.3.1.1 A module state at time t is

= ¢(null), if the module is idle at t, _ ‘
={r}, if the module is busy at t because it accepted a request r

STUs ago, where r is an integer such that 1 Sr sc-1,
={r’}, if the module is busy at t because it began a block transfer

operation r° STUs ago, where 1'sr’s (T-1)". 4

A prime (°) is used only to distinguish a busy module which is
involved in a block transfer operation from a busy module which is
executing its cache cycle. Since numerical values of r can be equal to
values of r’, the prime or absence of a prime is part of the state
representation in addition to the numerical value. Definition 3.2.1.2
defines the line state,)(t), for this model also. The definitions which

evaluate the next module state from a given module state are redefined as

follows.

127

Definition 3.3.1.2 Given that the state of a module at t is &, the

next module state (at t+1) is

={1}, 1if a hit request which addressed the module at t was accepted, or
={17}, if at time t, a request which addressed the module resulted in a
miss and all the modules on the corresponding 1line were idle,
i.e., the referenced module began a block transfer operation at t,
2P otherwise; i.e., either no request addressed the module at t, or a
request which addressed the module at t was rejected due to a line

collision. a

Therefore, a module remains in the null state unless either it
accepts a hit request at time t whereupon it will become busy and remain
busy during the interval (t,t+c) or it begins a block transfer operation
at time t whereupon it will become .busy and remain busy during the
interval (t,t+T). For a busy module, the next state can be evaluated by

the following two definitions.

Definition 3.3.1.3 Given that the state of a module at time t is {r},
where r is an integer such that 1<r<c-1, the gext module state is {r+1}

if r< c-1 and ¢ if r=c-1. O

Once a module accepts a hit request, it goes through the module

states {1}, {2},..., {e=1}, @. As stated before, the maximum acceptance

rate for a module is one accepted request per ¢ STUs.

128

Definition 3.3.1.4 Given that the state of a module at time t is {r’},

where r° is an integer such that 1°< r’ <(T-1)°, the next module state is

{(re1)°} 4f r° <(T=1)" and & if r’=(T-1)". |

Clearly, once a module is involved in a block transfer operation it
goes through the module states {17}, {2°},..., {(T=1)"}, ¢. Again,
determining the next line state is as straightforward as determining the

next module state. The following definitions are needed to clarify the

presentation.
Definition 3.3.1.5 If there exists r° & A(t) such that 1°

£ r’ =<(T-1)°, then A(t) is a busy line state, otherwise it is an idle

Alne state. a

Observe that a busy line state contains one nonnull element with a
prime (7). Once again, one element is sufficient to describe the busy
line state even though there may be more than one module on the line
actually involved in the block transfer operation. Note also that the
sequence of busy line states can only start at line state &. Since a
miss can initiate a block transfer operation if and only if the line is
at the null state, every accepted request will complete its cache cycle

without being aborted. Hence every busy module is a blocking module.

Definition 3.3.1.6 An idle line state, A\ (t), is an gggeptance state if
1 € Xt), otherwise it is a ponacceptance stata.]

T R P e [TV (L PPNV SO Y~ § o £ VT SN L s T

129

Since a hit or miss of a request is determined before it is accepted
by the line or module, the checking state defined previously no longer
exist in this case. In this model, a busy line state rejects all
requests since the line is busy for block transfer operation. A
nonacceptance state does not accept a request because either a request
references a busy (blocking) module on the idle line, or no request
references this idle line, or a request to this idle line is rejected due

to a miss. There are two possible state transitions from each pérticular

idle 1line state, A(t), except from the idle line state &: one is to an
acceptance state and the other is to a nonacceptance state. In addition
to these two possible state transitions, there is one more possible state
transition from the idle line state ¢, that is to a busy line state.
Now the transition probabilities can be obtained with the aid of the

following lemma and corollaries.

Lemma 3.3.1.1 The probability of transition from an idle line state,

2 (t), to its successor acceptance line state is

where [)| is the cardinality of the line state A(t). a

The proof of this Lemma is similar to that for theorem 3.2.1.2. Note

that every accepted request must be a hit request. Hence the probability

‘; of accepting a request at a particular idle line state is the probability

130

that a2 request references an idle module on the idle 1line, 1i.e.,

q(m=121)/m, and the request is a hit.

Corollary 3.3.1.1.1 The probability of transition from a nonnull idle

line stats, A(t), to its successor nonacseptance line state is
Pn(K) = 1 - Pa(l) 0

Note that P, (A)+P,(M=a1 because there exist only two next line states:

an acceptance state and a nonacceptance state.

Corollary 3.3.1.1.2 The probability of transition from line state ¢ to

its successor busy line state is Pb(#)=(1-h)q and the probability of

transition from line state ¢ to its successor nonacceptance state 1is

Pn(?)=1=-q.

Proof: There are three possible next line states from the line state ¢:

the successor acceptance line state, the successor nonacceptance line
state, and the busy line state., For line state ¢, Pa(®)=hq(m-0)/m=hq.
Thus 1-hq = P (8) + Py(d). P (d)=1~q is the probability that no
request references the line at state ¢ and Pb(®)=(1=h)q is the
probabdbility that a request which references the line at state @ results

in a miss. 4

Similarly, since there is no successor acceptance state from a busy

line state, the probability of transition from a busy line state , 3 (t),

R e gy

131

to its successor busy 1line state (or to ¢ if (t)=(T=1)’) is one.

Theorem 3.2.1.4 is also applicable in this case.

For given cycle characteristics (e¢,T), the line state diagram is
readily constructed by using the above definitions and one-step
transition probabilities. An example of the line state diagram for cycle
characteristics (¢,T)=(3,10) and m> ¢~1 is shown in figure 3.3.1.1, where

#* indicates the acceptance states.

Theorem 3.3.1.2 The total number of distinet line states for cycle

characteristies (e¢,T) is

c-1

Total number of distinct line states = 2 +T -1, form 2 c-1
c-1
= z (i >+T-1, for m < c-1
021 <€n
Proof: For m=>c-1, as before, the line states which contain nonnull

element r such that 1 sr <c-1 form a binary tree with tree height c«2.
The total number of states contained in the binary tree is 2°'1-1. In
addition, there are T-1 busy line states and one null line state. Hence
the total number of distinct line states is 2~ '4T-1 for m=zc-1. The

number of busy line states is still T-1 for m<ec-~1. However, for m<c~1,

the total number of distinct idle line states is ¥ (c-1) m|
O<i<m '

i

By

(¢.T)=(3.10)

Lo Ly ... Ly

Figure 3.3.1.1 Line state diagram fér shared cache with
explicit lookup tables and cycle characteristics
(¢, T) = (3,10).

[——

133

Theorem 3.3.1.3 In the L-M shared cache memory, the steady state '

probability, Psz(c,T,p), that a particular 1line at a particular STU

accepts a hit request is

¥
PSL(C,T,P) = z pk ’ i
A e {n]182)

where pk is the probability of being in line state A. Furthermore,

PAh (C,Tap) =L PSE (C,T,P)/hp

Proof: Since there are no aborted requests with explicit lookup tables

wnder the selected scheduling strategy, a hit request is accepted, and
therefore successful, at a particular line each time the line enters a

state), such that 1 € A. The formula for P follows. Then LPS is the

S4 £
number of accepted hit requests per STU over all lines and hp is the

number of hit requests submitted per STU. The formula for PAh follows. [

Note that the 1line state diagram generated by the Markov model
developed in this section is also an ergodic Markov Chain. Therefore, a

unique equilibrium solution can be obtained.
The example of (¢,T)=(3,10) can then be solved as follows.

Let p, denote the probability of being in the line state i.

From figure 3.3.1.1, we can obtain the following six equations.

m-mhq+hq

Py = (1-q)p¢+

pz-f-(l-h)qpﬁ (D)

m-1
Py = ahp,+ 7= hqp,

2)

m~-1 m=2
Pi,2 T - haet 4= hap , e
m-mhq+hq m-mhq+2hq
Pz = o P1+ o p1,2 (4
P’ = (I-hapy (5)
(6)

- ' =
p¢+p1+92+p1’2+(T ey 1
From equation (3),

m-mhq+2hq mhq-hq

m

mhq-hq
P1,2 - Tm-mhq®2hq 1 .,
From equation (4),

m-mhq-+hq mhq-hq

From equation (2),

mhq-hq

m

Py = hap+ P

m-mhq+hg
Py = mhq P1.

From equation (5),

pl' = (1-h)qp,

- (1-h) (m-mhq+hq)
mh Py

Hence equation (6) becomes

m-mhq+hq mhq~hq
[mhq Tl+l+ m-mhq+2hq

(1-h) (m-mhq+hg) -
+9 _—]1:1 1.

134

=

Solving for Pl yields

Nhq{ N- mthq + Zthq)Y2

Py = Y|Y, + 2NhqY, + Nhq9mthq-£ha) + 9(1-h)a¥,¥,

where Y, = (N - mthq + Zhq)

and Y. = (N - mthq + 22hq).

2
hN(l-Pl)(N+£hq)
Pl =p +p,= A .
th(l-Pl)(N+£hq)
Hence PS = A
ZN(l-Pl)(N+£hq)
and P =
Ah A

2
where 4 = /N(N+£fhq) + 9(1-h)qu1Y2 + 24"hq (N+£hq)

Similarly, T can be 1left unspecified when constructing the line

state diagram and a closed form solution is still obtained. For example,

if the line state (9°) in figure 3.3.1.1 is replaced by ((T-1)"), then a
line state diagram for (¢,T)=(3,T) results and a closed form solutions

for ¢=3 with general T can be obtained by going through the same

computation process.

3.3.2 Probabilistic Model

In this section, the probabilistic approach is discussed.

As stated

g

136

previously, a request may be blocked for one of four different reasons.
These four types of blocking factors are in a different order in this
model because of the different organization considered here. Since an
explicit lookup table is associated with each line in this case, the line
status will be checked after a hit or miss is determined for a request

which references the line. Hence a cache request may be blocked due to

(1) Multiple access line collision (only if p >1),
(2) Cache miss (only if h <1),
(3) Busy line collision (only if h <1 and T >0}, or

(4) busy module collision (only if c >1).

Since no accepted request will be aborted, the busy line collision
only rejects requests because the line is busy for a block transfer
operation. Note also that the number of busy modules equals the number
of blocking modules in this case. Let P,, p,, P3 and Py be the
probability of blocking of a request due to the above four events,
respectively. Since these four events are mutually exclusive and
independent of each other, theorem 3.2.2.1 and corollary 3.2.2.1.1 can

still be applied.

Note that 92 is equal to (1-h) in this case and P, is still given by
theorem 3.2.1.1. Only the probabilities of busy line collision, P3, and

busy module collision, P,, have to be rederived.

137

Lemma 3.3.2.1 The probability of a request referencing a busy line is

q(T-1) (1-h)E()
P3 = P ’

where E(@) is the expected number of lines in line state 2 and q is

given in lemma 3.2.1.1.1.

Proof: Let B be the probability that a particular line is in line
state @®. Note that an idle line state will make a transition to a busy
line state if and only if a miss occurs on a line at state ®. Hence the
probability that a particular line changes from idle to busy is (1-h)q%5.
Since there are {flines in the system, the expected number of idle lines
which become busy lines per STU is (1-h)q£Pb. Once a line becomes busy,
it remains bi'sy and rejects all newly arriving requests for the following
T-1 time units. Therefore, the expected number of total busy 1lines,
E(BL), seen by an arriving request is E(BL) = (T-1)(1-h)q4P, Since E(2)

0}
= zgﬁ, then E(BL) = (T-1)(1~h)qE(¢). By definition, P3 = E(BL)/t =

(T=1)(1~h)qE(6)/2 . O

Since there are no aborted requests in this model, one additional
busy (blocking) module will be caused in the system by each accepted hit
request. Thus, the computation of Ehe probability of referencing a busy

module on an idle line, Py, is straightforward.

Lemma 3.3.2.2 The probability of a hit request referencing a busy

module on an iu.< line is

. (C‘I)PPS
4 N(I-P3)

Proof': Since every busy module is a blocking module in this case, by

lemma 3.2.2.2, P,:E(BM/IL)/E(M/IL). The expected number of idle lines is

given by corollary 3.2.2.1.2, =j(1-P3) in this case. Hence,

105 4i41e
Py = E(BM/IL)/N(1-P3). Obviously, the expected number of busy modules on

idle lines, E(BM/IL), is the total number of accepted hit requests during
the last (c-1) time units. Since there are p simultaneous requests made
by a parallel-pipelined processor of order (s,p) per STU, E(BM/IL) is

then equal to (c-1)pPg, |

The only unknown needed to be solved for in order to obtain the
probability of acceptance of a hit request is E(¢). The following lemma

aids in the evaluation of E(¢).

Lemma 3.3.2.3 In the steady state, the total number of successful

requests per STU for a system with cycle characteristics (¢,T) is

PP = Y EM
" ae h[18A] a
This is obvious since every accepted request is a successful request.

The probability of acceptance, P, (¢,T,p), of a hit request for the

cycle characteristics (3,10) can now be solved for as follows.

o)
|]

1+ 1-1-1/0)F ¢/p

P, = 1-h

)
]

(c—l)pPS 2pPS
P, = =
4 N(l-P3) N(l—P3)

From figure 3.3.1.1. and lemma 3.3.2.3,

E(1) + E(1,2) = pPg

and

E(L.2) = %L ngr(1) + 222 her(1,2).

Solving for E(1,2):

mhg-h

E(1,2) = m-mhq + 2hq

E(1)

Substituting for E(1,2) in equation (1) and simplifiying,

E(1) = m-mhg+2hq pP

m+hq s*

From figure 3.3.1.1, E(2) = E(1) and

1

E(1) = %= hgE(2) + haE(®)

- = ngE(@)+ E2 heE(D)
Solving for E(9),
- m~mhq+h
E@) = SRR e 1)

» (m-mhq+hq) (m-mhg+2hq) p
mhq (m+hq) g

(m~mhq+hq) (m-mhq+2hq)
Hence, Pq, - Nq (a+hq) pPAh.

139

— e —

i e o <

140

Substituting for Py and T in P3

(m-mhgfhg)(m-mhthhq)gPAh
N(m+hq) :

P3 - (T-l)(l-h)qp¢ = 9(1-h)

Substituting for P3 and P4 in

Py = (1-P) (1-Py) (1-P,)

and solving for PAh yields

N(1~-P,) (N+£hq)
Pan = 1

IN(N+2hq)+9(1-h) 2qY1Y2+222hq(N+P.hq)
where Yl = (N-mfhq+2hq) and Y2 = (N-mLhg+22%hq)

Here PAh ié identical to the result obtained in last section.

In order to evaluate the performance, CPU utilization, a knowledge
of the penalties caused by a cache miss is needed. The following lemma

helps to evaluate the miss penalty due to rejection only.

Lemma 3.3.2.” The probability of acceptance for a miss request

attempting to initiate a block transfer operation is
PAm(c’T'P) = (1°P1)p¢ ’

where Py is the probability of being in line state &.

St 2 i, e s

W

141

Proof': A miss request is accepted, i.e. a block transfer operation is

initiated, if and only if this miss request passes through the multiple
access line collision, probability (1-P.), and references a line in state
@, probability g¢ « Since these two events are mutually exclusive and

independent of each other, the lemma follows. m|

Theorem 3.3.2.1 The CPU utilization, Cu, for a shared cache memory with

explicit lookup tables and the cyecle characteristics (¢,T) is

1
Cu =
h 1
F— M) [F= +1v]
PAh PAm

vhere T = rT/s] .

Proof: From the derivation of theorem 3.2.2.2, it is easy to show that
given a probability of acceptance, PA’ for a request, the penalty, i.e.,
null passes, caused by the access conflict is (1/PA)-1. However, in the
case of the shared cache memory with explicit lookup tables, PAh is the
probability of acceptance for a hit request. Hence the hit requests will
suffer a penalty of (1/PAh)-1. Similarly, from lemma 3.3.2.4, a cache
miss has to wait for (1/PAm)-1 null passes in order to injitiate the block

transfer operation. Hence the total penalty caused by a miss request is

(1/PAm)-1+T". The total number of passes a random request must take is

1 1
(3= =1+ (35— =-1+1"] (I-h) +1
Ah Am
h 1
-P—+(1-h)[;- +1™] O

Ah Am

v

142

For the cases ¢=1, 2, and 3, a summary of the probabilities of
acceptance for hit and miss requests are listed in Appendix B. These
calculations require reference to the corresponding Markov state
diagrams, at least for evaluation of E(¢), and no useful analytic bound

on performance has been found for the explicit lookup table models.

3:3.3 Dynamic Hit Ratio

Due to the complexity of evaluating the hit ratio function, the hit
ratio is 1left unevaluated and treated as a specified parameter in our
analytic models. The hit ratios for various parameters can be obtained
from simulation. The hit ratio (miss ratio) obtained from simulation for
a given program and a particular set of parameters is called static hit

ratio (static miss ratio).

For shared cache with explicit lookup tables, a miss request can be
accepted, i.e. a block transfer operation is initiated, by a line only
if that line is in the empty state. Therefore, a miss request is more
likely to be rejected by this cache memory system than a hit request.
Due to this biased rejection for miss and hit requests, more miss
requests will be resubmitted than hit requests. Then a lower hit ratio,
called dynamic hit ratio, rather than the static hit ratio is seen by the

cache memory system. The dynamic miss ratio is similarly defined.

In sections 3.3.1 and 3.3.2, the derivation of the probabilities of

acceptance for miss and hit requests, namely P, and PAm’ involves an

Ah

et

143

independent parameter, i.e. the given hit ratio h. This hit ratio h
should be the dynamic hit ratio actually seen by the cache memory system
for the reason mentioned above. Therefore, the parameter h which appears
in the transition probabilities and the probabilities of acceptance for
explicit lookup table model is the dynamic hit ratio, instead of the
static hit ratio. However, the hit ratio h which appears in the CPU
utilization formula given by theorem 3.3.2.1 1is the static hit ratio
since the number of misses which actually cause a block transfer
operation is assumed unchanged. Note that miss and hit requests are
equally likely to be rejected for the implicit lookup table model.
Therefore, the dynamic hit ratio equals the static hit ratio for implicit

lookup table model.

Let hs and hd denote the static hit atio and dynamic hit ratio,
respectively. The relationships between static hit ratio and dynamic hit
ratio for the explicit lookup table model can be derived as follows.
Since a line state, A\, with 1 €)\ accepted a hit request one STU ago and
a line state, A, with 1 &)\ accepted a miss request one STU ago, the

static hit ratio can then be expressed as

le{ l g1}

Py
xehl 12X\ or 1'e1}

vhere px is the probability of being in line state).

By substituting hd for h in the trans!tion probabilities developed

T s eitaeea— o

=S - —oprics. AR ST

T

144

in section 3.3.1, the relationships between hs and hd can be solved from
line state diagram for a specified cache cycle, c. For a given c, hd can

be expressed in terms of hs‘ The performance prediction for the explicit

lookup table model can be computed by replacing h with hd in PAh and

PAm and then plugging PAh’ PAm and h=hs in the CPU utilization formula.

Since this relationship 1is dependent on ¢, no general solution of

dynamic hit ratio for arbitrary ¢ 1is obtained. A summary of the
relationships between static hit ratio and dynamic hit ratio for the

cases ¢=1, 2, and 3 is listed in Appendix B.

3.4 Private Cache Memories

All the previous sections in this Chapter deal with the performance
analysis of shared cache memory systems. In order to compare the
performance difference between a shared cache memory and private cache
memories, a probabilistic model for multiprocessor system with private

cache memories is discussed in this section.

Figure 1.5.1 shows the organization of a multiprocessor system with
private cache memories. Since each stream has its own private cache and
since there is no overlap within a stream, there is no cache access
conflict. Furthermore, a request which results in a cache miss will
immediately cause the cache controller to generate a request, called a
main memory request, to the main memory for fetching the new block.

However, since the main memory is shared by all the processors in the

145

system, a main memory request may be rejected due to access conflict.
Therefore, the system performance is dependent not only on the hit ratio
but alsc on the access conflict at main memory. As before, the hit ratio
will be 1left unevaluated and considered as a parameter which can be
obtained from simulation. The analytical model here is oriented toward
developing the probability of acceptance, PAM’ of a given main memory

request for the private cache system with a shared main memory.

In addition to the assumptions made in section 3.1, more explanation
is necessary to clear up some possible ambiguities in this system. Note
that the p parallel processors in this case are nonpipelined processors.
Therefore, one instruction (processor) cycle time, instead of one STU, is
considered as the basic time unit. The processor request rate, ¥, is
assumed to be one as before. Thus each processor makes one cache request
every instruction cycle. Since the processor request rate, ¢, equals
one, the miss ratio, 1-h, becomes the request rate for main memory
requests from each processor. The occurrence of a cache miss is
independent of previous misses in the same private cache and in the other
private caches. Also it 1is independent of all the other simultaneous
cache misses. From the main memory point of view, since each processor
executes its own independent stream, the addresses of the main memory
requests are randomly distributed. For analytical simplicity, it is
assumed that the addresses of the main memory requests are independent
and uniformly distributed among the M main memory modules. The
independence and randomness assumption for the main memory reference

patterns allows rejected requests to be discarded in the model, In

PPy 0 <, Mmoo crv

{
!
:
!
|
¢

146

practice, those rejected requests will be resubmitted the very next
cycle. The effects of the resubmitted requests will be tested in the
simulation model discussed in chapter 4. Note that if the main memory
modules are interleaved by low-order bits, the crossbar is then switched
very often during the block transfer operation. Thus, a main memory

interleaved by high-order bits or interleaved by blocks is assumed.

Once a main memory module accepts a request, the main memory module,
the associated line, and the associated connection path in the crossbar
are busy for T" time units, where T" is the total number of instruction
cycles needed to complete a block transfer operation. Therefore, a
request to the main memory may be rejected for either of the following

two independent and mutually exclusive events.

(1) Multiple access line collision (only if p >1), or

(2) Busy (main memory) module collision (only if h <1 and T" >0).

Let PI and PII be the probabilities of rejection of a main memory
request due to (1) and (2), respectively. The probability of a main
memory request being accepted, P,,, is then (1-P;)(1-P;y). The following

theorems are developed to evaluate PAM'

Lemma 3.4.1 The probability of a main memory request being rejected due

to multiple access line collision is

i

O R

5y

147

M 1-h

- - =P
1-¢1- 5k,

3 S

where (1-h) is the main memory request rate and M is the number of main

memory modules.

Proof: Since the request rate of each processor is (1-h), there are a
total of (1-h)p requests issued every instruction cycle. Obviously a
particular memory module in a particular cycle will be referenced by a
request with probability (1-h)/M. Similar to the derivation of theorem
3.2.1.1, the memory bandwidth is M{1-[1- (1-h)/M)]P}. The probability of
acceptance, 1-PI= (memory bandwidth)/(expected number of requests per

cycle). O

Theorem 3.4.1 The probability of acceptance, PAM’ of a main memory

request for a multiprocessor system with private cache memories is

M (1-¢1-20)R

(1-h)p M
Pay © 1-h
1+[1-(1 -T)P][™-1]

Proof': There are an average of (1-h)p main memory requests issued
every processor cycle. Of these, a total of (1-h)p(1-PI) requests pass
through the multiple access 1line collision. A particular main memory

module is referenced by one of those requests with probability

148

(1-h)D(1-PI)/M. Therefore, the request rate seen by each main memory
module is (1-h)p(1-PI)/M. Once a main memory module accepts a request,
it will be busy for T" time units. Figure 3.4.1.1 illustrates the Markov
state diagram for a main memory module., The definition of the module
state 1s similar to Definition 3.3.1.1. Note that only an idle module
can accept a request. The module states of nonnull elements represent

the busy module states. Since @ 1is the only idle module state, the

probability of being in state &, p, , 1s 1-P;;. From this state diagranm,

Rt can easily be found and is given as follows:
1

Po ~ (1-h)p(T-p)) ,
1+ — (T-1)

Therefore, =(1- P (1 - Py)

PAM
M_op1-c1-1RyPy
(1-h)p M

= 1-h
1+(1=-(l=- = Y™ - 1) 0

Note that if « =(1-h)p(1-PI)/M, then py =1/[1+ a(T"=1)] 1is the
probability of acceptance of a request for a single resource, where o is

the resource request rate and T" is the resource cycle. Emer [60] has

derived this result.

One assumption used to derive theorem 3.4.1 is that the main memory

request rate, 1i.e. static request rate, is (1-h). However, this rate

149

M HPAR) \
¢ —Mynrto@—t—a.... —L— a0

1

Figure 3.4.1.1 Memory line state diagram for multiprocessor
with private-cache systems.

.

150

requires adjustment because a main memory request will be resubmitted 1if
it is rejected. Furthermore, once a main memory module accepts a request
made by a particular cache controller, this cache controller would not
make any new request during the following T" time units. With these two
effects, the actual request rate, i.e. dynamic request rate, seen by the
main memory may be altered. The following theorem gives the dynamic
request rate seen by the main memory by considering the request rate

changes due to rejection and acceptance.

Theorem 3.4.2 For a given static request rate, (1-h), the dynamic

request rate seen by the main memory is

1

& = 1 «
"t a——

L+ T * (T) Pan

Proof: Assume that the total number of instruction cycles needed to
execute a job is R+R” if there is no main memory access conflict and the
main memory cycle is less than one instruction cycle, where R of the R+R’
processor cycles involve requests. Then the request rate is
R/(R+R°)=(1~h). However, a request will be resubmitted the very next
cycle if it is rejected due to memory access conflict. On the average, a
request takes 1/PAM instruction cycles in order to be accepted, where
P is the probability of acceptance of a request. During each null

AM
pass, the same blocked request is resubmitted. Therefore, R requests

e v e

151

will be extended to a total of R/PAM requests., Once a request made by a
particular processor is accepted, no new request will be made by this
processor for the following T" time units if the memory cycle time is T".
Since every request will eventually be accepted, the total number of
instruction cycles in which there is no request is R'+RT". Hence the

dynamic request rate seen by the memory is

R
PAM
a = =
—. +R' +RT"
Pan
1
Since 1-h = R/(R+R°), then a = ' .
! 0
" + —
1+1T P ¥ (T DPAM

Note that the dynamis request rate,x , can be larger than or smaller
than the static request rate, (1-h). If T" = 0, then o = 1/{1+[(1/1=h) -
UPAM}’ which is the result given in [60]. In this case, since the block
transfer time 1is zero, the above theorem reduces to the case in which the
system contains processor and main memory with processor request rate 1-h
and main memory cycle time one. Note o is always larger than 1-h for
T"=0 because every rejected request will be resubmitted which increases
the request rate. At another extreme, if h=0, then ¢ = 1/(1+T"PAM). In
this case, the theorem reduces to the case in which the unadjusted

processor request rate is one and main memory cycle time is T". Now o is

152

always oaaller than one, since once a request made by a particular
processor is accepted, this processor will not make any new request until

the accepted request finishes its cycle.

This actual request rate tries to correct the assumption made 1in
theorem 3.4.1. Note that @ is a complex function of PAH' Thus this
equation is most easily solved by iteration. By combining theorem 3.4.1
and theorem 3.4.2, the corrected solution for PAM can be obtained by the

following two iterative equations provided an initial condition fora, is

i
given: M o

_— g N

°‘1P[1+(1 ralD R

P

M

[+ 4
1+[1-(1-M—1)P][T"-1]

given o - 1l -nh.

Theorem 3.4.4 The CPU utilization, Cu, for a multiprocessor system with

private cache nmemories is

1
1

1+ (l-h)[-P—-- 1+1)
AM

Proof: This is obvious since the penalty for a miss is (1/PAM)-1+T".

i

-~

153

For the private cache memories, there is no access conflict at the cache

level. Therefore, there is no penalty for a hit cache request. d

3.5 Concluding Remarks

The analytic models for two distinet cache organizations, namely
shared cache with an implicit lookup table and shared cache with explicit
lookup tables, have been developed in this chapter. A Markov approach
and a probabilistic approach have been presented for both models. Due to
the complexity of evaluating the hit ratio function, the hit ratio 1is

left unevaluated and treated as a specified parameter in our analytic

models.

For shared cache with an implicit lookup table, a block transfer
operation is initiated on a line as soon as a miss is detected on that
line. Any incompletely served request on the same line when a miss
occurs is simply aborted. Since miss and hit requests are equally likely
to be accepted, program static hit ratio is equal to the dynamic hit

ratio in this case.

However, for shared cache with explicit lookup tables, a higher
priority of acceptance is assigned to hit requests., A block transfer
operation can be initiated on a line only if that line is in the empty
state. In this case, a miss request is more likely to be rejected than a
hit request. Due to the biased rejection for miss and hit requests, the

dynamic hit ratio seen by cache memory system is different from the

PN ook YT WIS WS,

L A

a=n

154

program’s static hit ratio. We have shown the relationship between

static hit ratio and dynamic hit ratio.

Since the line state space increases exponentially with cache cycle,
¢, no general solution for performance has been obtained for arbitrary c.
However, we have derived upper and 1lower performance bounds for the

implicit lookup table model, but not for explicit lookup table model.

A probabilistic model for private cache systems has also been

developed.

In chapter 4, the hit ratio function is evaluated for various
parameters by simulation. The simulator is driven by real program
traces. In addition to evaluating the hit ratio function, the inaccuracy
caused by the assumptions about program referencing patterns for our
analytic models is also evaluated by comparing the analytic predictions
with simulation results. Furthermore, some dynamic space sharing

behavior is observed and the effects of access confliet on performance

are discussed for a wide variety of parameter values.

e

155

CHAPTER &

ANALYSIS OF RESULTS

4.1 Introduction

Due to the complexity of the effects of various parameters on hit
ratio, hit ratio was unevaluated and considered as a given parameter in
analytic models. -In this chapter, the hit ratio function is investigated
for a range of parameters and several different workloads by simulation
experiments. In the previous chapter, it was assumed that blocked
requests were discarded so that the independent and random request
assumption could be justified in the analytical models. The analyses in
last chapter were also based on the assumption that the cache hit ratio
is independent of cache access conflict. In this chapter, these
assumptions about program behavior will be verified by comparing the
analytical predictions with simulation results. Therefore, the purposes
of simulation experiments are to study the hit ratio function and to
validate the analytic models. In addition to the discussion about the
simulation results, the effects of varying the £ , N, p, ¢, Ty, rand h
parameters will be discussed based on analytic predictions. The
performance prediction for processors with 1load through capability is

illustrated by a direct extension of the analytic solutions developed in

the previous chapter. Furthermore, the performance comparisons between

-

T T I T T

—

156

shared cache and private cache for some sets of parameters are given.
For convenience, from now on, the analytic models of the shared cache
memory systems with implicit lookup table and explicit lookup tables will

be called model A and model B respectively.

Trace-driven simulators written in SIMULA [61], for model A and
model B, have been developed. Four real program traces are used in the
simulation study to generate address sequences for cache memory requests.
They are GAUSS, EIGEN, ECOBOL, and CCOBOL. The first program, GAUSS,

performs Gaussian elimination on a 20x20 matrix to solve a set of

simultaneous linear eguations. The second program, EIGEN, determines the
eigenvalues of a 1U4x14 matrix. Both GAUSS and EIGEN were written in
FORTRAN. ECOBOL is the trace of an execution of a COBOL program and
CCOBOL is the trace of a compilation of a COBOL program. All the traces

were collected by running these programs on an IBM/360 system.

Although the multiple-stream systems investigated in this thesis are

MIMD computer systems as introduced in chapter 1, they can be further

classified into the following four different operating environments:
Independent Instruction - Independent Data (IIID), Shared Instruction -
Independent Data (SIID), Independent Instruction - Shared Data (IISD),
and Shared Instruction - Shared Data (SISD). A MIMD computer system
operates in the IIID environment if there is no shared instructions and
data among streams. This is the usual situation when each processor)
executes its own program and data. However, if all processors exescute

the same program, but each operates on a different data set, the SIID

operating environment pertains.

RO
. .

———
. .

157

In this research, IISD and SISD operating environments will not be
investigated in the simulation studies because no program trace
corresponding to these environments is available. However, IIID and SIID
operating environments can be simulated by the four available program
traces and their effects on hit ratio will be studied. For the IIID
operating environment, shared cache may result in higher performance than
private cache due to dynamic space sharing. In addition to the dynamic
space sharing, shared blocks, i.e. Dblocks containing shared information,
may further improve the performance for shared-cache systems operating in
the SIID environment. To simulate a p-processor system, p program traces
should be used. In our simulation study, each program trace is evenly
divided into four trace sections and thereby up to 16 processors can be

simulated simultaneously. '

The IIID operating environment can then be simulated by assigning
each processor 1its own unique trace section and an associated offset
consant. The effective addreasea requested by each processor are
generated by adding its offset constant to each address in the associated
trace section. The offset constants are chosen such that the effective
address spaces of both instructions and data among the p trace sections

are disjoint.

The SIID operating environment can be simulated by assigning each
processor a unique trace section of a single program trace and an
associated offset constant. For each processor, its offset constant is
added to the data addresses in the associated trace section to generate

the effective addresses. The offset constants in this case are chosen

158

such that the effective data address spaces of the p processors are
disjoint. This offsetting technique in trace~driven simulation has been
used by some previous authors [40] to investigate the memory interference

problem in multiprocessor computer systems.

The effects of different operating environments on the hit ratio
will be discussed in section 4.3. However, the IIID operating
environment is used in the remainder of this chapter. In section U4.4,
performance comparisons between shared cache and private cache for a

range of parameters are carried out to validate the analytic models.

Due to the fact that the architecture of the IBM/360 uses various
instruction lengths and various length data representations, the traced
addresses are not all at the word boundaries. 1In the simulation study,
it is simply assumed that each word contains four bytes and both cache
capacity and block sizes are integral multiples of the word size. A
cache request is generated by adding the offset constant to the traced
address and then ignoring the two least significant bits. For example, a
cache memory with block size 8 means each block contains 8 words, or 32

bytes.

A high rate of cache misses usually happens during the. initial
period of the execution of a particular program because of an initially
empty cache. As the cache begins to fill, the initial high rate of cache
misses drops rapidly and soon reaches the value for a full cache [U6].
Cold-start miss ratios are miss ratios that are wmeasured with an

initially empty cache memory [62]. Warm-start miss ratios are miss

159

ratios that are measured with a cache which 1is full with the blocks
associated with the process being executed. Cold-3tart miss ratios are
useful in studying certain aspects of multiprogrammir)erformance
because cache miss ratios are affected by task switching. GCa the other
hand, warm-start miss ratios should be measured if behavior of a program
running uninterrupted for indefinitely 1long periods of time is being
studied. Hence, all miss ratios referred to in this chapter are the

warm-start miss ratios.

Let the time period between the beginning of a simulation run with
an initially empty cache and the time instant to measure the warm-start

miss ratio be the initial period. Usually this initial period is the time

period needed to fill the cache memory. However, the cache memory may
never be filled in our experiments. Sincé the set associative mapping
mechanism 1is used, the address space of a program may nol be mapped onto
all the cache blocks. In this simulation study, the initial period is
determined heuristically by experiment. It was found that the time
period of the first five thousand distinct requests is sufficiently 1long
for a 1Kk cache memory to avoid the effect of the initial condition.
Therefore, the time period of the first five thousand distinct requests
is used as the 1initial period for a 1K cache memory in our simulation
experiments. Since the initial period is a function of the total cache
capacity, the initial period is proportionately increased when the cache
capacity 1is increased. For example, the time period of the first twenty
thousand distinet requests is used as the initial period for a 4K cache

memory.

A 5 e o T

160

In addition to the initial conditions, the total 1length of the
simulation run, including the initial period, is important for properly
interpreting the measured data. The simulated system may not reach the
steady state if the simulation is terminated too early. However, it is
expensive for a long simulation run. In our experiments, the simulation
was performed for a certain number of instruction cycles, i.e. number of
cache requests, because of simulation costs. This termination time is
also heuristically determined by experiment. For each trace section, it
was found that there are no significant changes in the measured
performance data after a total of ten thousand distinet requests,
including the initial period, has been made. Therefore, the termination
time of the simulation running under a single stream environment is the
time when the ten thousand-th distinet request is made. Note that a
parallel-pipelined processor of order (s,p) can execute sp distinct
instruction streams concurrently. Those sSp requests made within one
instruction c¢ycle are interleaved among the streams so that each comes
from a distinct stream. Therefore, the termination time for the multiple
stream cases is a function of the total number of streams, sp, in the
system. In this study, the termination time is proportionately increased
when the number of streams is increased. For example, to simulate the
case of four streams sharing a 1K cache memory, the initial period is set
to the time when the five thousand-th distinct request is made and the
termination time is set to the time when the forty thousand-th distinct

request is made.

General definitions of hit ratio and miss ratio were introduced in

161

chapter 1. This definition was applied in chapter 3 under the
independent request assumption of the analytical models. However, in the
simulation experiments, the blocked requests are resubmitted, instead of
discarded, until they are satisfied. The hit ratio is then a function of
the number of resubmitted requests if the previous definition of hit
ratio, 1.e. the fraction of all cache memory requests resulting in a
hit, 1is used in analyzing the simulation data. In order to exciude the

effect of those resubmitted requests on the hit ratio, the hit ratio in

the simulation experiments 1is defined as the fraction of all distinct

cache requests (not including the resubmitted requests) resulting in a
hit. The miss ratio is similarly defined. The CPU utilization in the
simulation experiments is defined as the fraction of total cache requests
(including the regubmitted requests) resulting in 4 hit. This is

equivalent to the fraction of time that CPU is busy doing useful work.

In summary, four different operating environments and program traces
have been introduced in this section. Cold-start and warm-start
measurements were also discussed. The initial period and simulation
termination time have been determined. In the following discussion, the
write-through updating scheme is assumed for shared-cache systems and the
write-back updating scheme is assumed for private-cache systems, except
when stated otherwise. Except for section 4,3, the IIID operating
environment is assumed in the rest of this chapter. Note that it 1is
impractical to show the combined effects of all parameters pictorially on
a two~dimensional graph. A simplification, which 1is adopted here,

studies the effect of each variable on performance, independently. Note

162

also that the hit ratio (or miss ratio) in the remainder of this chapter
means the static hit ratio (or static miss ratio), except when stated

otherwise.

ﬂ;g The Effects of Block Size, Set Size and Total Cache Capacity on Miss

Ratios

For a complicated system with many parameters, the effects of a
particular parameter on the system performance can be investigated by
varying this parameter while holding the other parameters constant. 1In
this research, the effects of the hit ratio and the cache access conflict
on system performance are treated as two different issues and studied
Separately. In the analytical models, they are separated by the
assumption of independence between' them. However, in the simulation
experiments, the effects of cache access conflict on system performance
can be eliminated by setting ¢=T=0 and p=1 while the effects of hit ratio
on the system performange are investigated. Note that for p=1, the
number of streams in the system can be specified by s, the number of
segments per pipelined proessor. Thus the effects of various parameters

on the hit ratio can be studied by setting ¢=T=0 and p=1.

In multiple-stream shared-cache computer systems, the hit ratio is a
complicated function of the number of streams, the block size, the set
size, the total cache capacity, and the program characteristics. The
effects of program characteristics on the hit ratio are discussed in the

following section. 1In this section, the effects of varying the set size,

!

163

the block size, and the cache capacity on the hit ratio for a fixed
number of streams are investigated. Note that the number of segments, s,
in each pipelined processor has no effect on the cache access conflict
[41]. The effect of the number of streams, sp, on the hit ratio can be
determined by varying s with p=1 because no cache access conflict, i.e.
¢=T=0 and p=1, is considered. In the following discussions, s is simply

assumed to be four, except when stated otherwise.

Figure 4.2.1 shows the miss ratio vs. cache capacity provided the
set size and block size are both fixed at 8. In this case, the first
section of each program trace is used to simulate the IIID operating
environment. The cache capacity 1is the total cache size measured in
words. Therefore, each private cache has cache size of a quarter of the
specific cache capacity. The mis; ratio for the private-cache system is
the value averaged over the four streams. For. this workload, figure
4.2.1 shows that shared cache always performs better than private cache.
This miss ratio improvement of shared cache may be caused by dynamic
space sharing and/or the write through policy used for shared cache. The
effects of dynamic space sharing and write policies on miss ratio will be
investigated separately in section 4.3. This figure shows that the
largest difference in miss ratio between shared cache and private cache
happens at a cache capacity of 1K. This difference becomes smaller as
the cache capacity either increases or decreases from 1K words. For
small cache capacity, the difference of miss ratios is small because all
cache blocks in both shared cache and private cache become saturated,

For large cache capacity, this difference is small because the cache

BEFRITRRWRRFEESS = T XTSI o S

.12 = Private
= = === Shared
Block size = 8
Set size = 8
.10 1\— b8 = &
\

.08 ™
=
t
youif
A
~ .06 =
o
o
LS]
[
2
@
g 04 -

.02 r—

B .00
| 512 1024 2048 4096 8192

Cache Capacity

Figure 4.2.1 Effect of cache capacity on miss ratio.

164

[ERPAT TP

[S VR UL e

T s Py

165

memories may contain most of the information needed for execution and the
cache hit ratios approach one for both shared cache and private cache.

Similar observations have been pointed out by Coffman and Ryan [29].

The impact of block size is shown in figure 4.2.2. The label at the
right side of each curve indicates the cache capacity. As can be seen in
most cases, for a fixed cache capacity, the miss ratio tends first to
decrease as the block size increases and then increases after a minimum
is reached. Especially in smaller caches, the miss ratio significantly
decreases as the block size increases. This happens because a smaller
cache depends more on the prefetching, i.e. block fetching, effect for
its performance. Since small caches may not be able to keep program
loops, the miss ratio improvement for large block sizes is primarily due
to bdblock fetching which matches program sequentiality and spatial
locality. For a fixed cache capacity, the increase in miss ratio results
from the blocks becoming so large that too few blocks are contained in
the cache. If the cache capacity increases to always contain the same
number of blocks, the miss ratio will continue to decrease as block size
is increased (with no adjustment in T). As shown in figure 4.2.2, for
example, the block size corresponding to minimum miss ratio for private
cache 1ncreases from 4 to 8 as the cache capacity increases from 1024 to
2048. These observations are also consisent with the results of previous

studies [45,u6].

Figure 4.2.2 also shows that the shared cache performs significantly

better than the private cache in this case. More specifically, the

relative miss ratios of shared cache with respect to private cache with

166

.20

Private
& ----- Shared

Set size = 8
ps = &

Miss Ratio, (1-h)

.00 L. L l !
2 4 8 16 32
Block Size

oz

Figure 4.2.2 Effect of block size on miss ratio.

T T —— —_TT | —— R ——TT VTR Yy
»-

.

167

various block sizes are 0.426 to 0.541 for a 2 K cache, 0.595 to 0.777
for a 1 K cache, and 0.714 to 0.852 for a 256-word cache. The minimum
miss ratios for shared cache with 512, 1024 and 2048 cache capacities are
0.093, 0.043 and 0.015, respectively. However, the minimum miss ratios
for private cache with 512, 1024 and 2048 cache capacities are 0.109,

0.067 and 0.03, respectively.

As illustrated in theorem 3.2.2.2 and theorem 3.3.2.1, the
performance is not dependent on miss ratio only, but also on the block
transfer time T" measured in processor cycles:. The block transfer time
is a function of the block size and the bandwidth of the main memory.
Larger blocks imply the need for longer block transfer time for a fixed
main memory bandwidth. Hencg, the block size corresponding to the
minimum value of miss ratio for a given cache capacity may not result in
optimﬁm performance. To optimize the performance, the block transfer
time T", and miss ratio (1-h) have to be minimized. The tradeoffs
between miss ratio and block transfer time will be discussed in more

detail in section 4.10.

Figure U4.2.3 depicts the effect of set size on miss ratio with fixed
cache capacity and block size., The miss ratio decreases as the set size
increases. The largest improvement in miss ratio occurs in going from
Set aize one to set size two for both shared cache and private cache.
The curve for private cache becomes flat as long as the set size is
larger than four. The previous studies [45,46] have the same conclusion.

Kaplan and Winder [U46] also showed that the effect on miss ratio is very

little as the set size increases from four to fully associative.

e oy

e sapen e s e Sercmed . 13 AL

Miss Ratio, (1-h)

.08

.07

.00

Private
_ = = =~ Shared
\
\ Cache capacity = 2048
\ Block size = 8

ps = 4

Set Size

Figure 4.2.3 Effect of set size on miss ratio.

168

e =

|

[

)

169

Although not shown here, this asymptotic behavior should be understood
because the space contention in each set becomes less for the large set

sizes.

As expected, the miss ratio for shared cache is more sensitive to
the set size than that for the private cache. This sensitivity is due to
the fact that each set in the shared cache is shared by all streams in
the system. Since the space contention within each set for shared cache
is more severe than that for private cache, shared cache performs worse
than private cache for set size equal one, i.e. direct mapping. Note
that the deadlock situation caused by space contention within a set, as
described iﬁ section 2.2, does happen in the experiment if a conventional
LRU, instead of the modified LRU, replacement algorithm is used in the
shared cache when set size equals one. However, figure 4.2.3 shows that
shared cache always performs better than private cache as long as set
size is larger than one. The miss ratio of shared cache tends to reach
the asymptotie, i.e. fully associative, value at larger set sizes. 1In
figure 4.2.3, the relative miss ratios of shared cache with respect to
private cache vary from 1.233 to 0.443 as the set size increases from 1
to 16. Therefore, from the performance point of view, relatively larger

set sizes are preferred in the shared cache systems.

4.3 The Effect of Operating Environment and Write Policy on Miss Ratio

In general, cache performance is highly affected by program

characteristics. However, the effects of program characteristics on miss

=T

N

170

ratio for shared cache are unclear. It was assumed that the write
through updating scheme is used for shared cache, but the effect of write
through on performance is also unclear. In this section, the effects of
different operating environments, write policies, and program
characteristics on miss ratio are investigated. The following studies
are based on the observations of our simulation experiments. More
research will be suggested for those phenomena for which no firm

conclusion is obtained from observations.

Assume that there are four streams in the system, i.e. sp=i4. An
IIID operating environment with all streams being executed having similar
program characteristics can be simulated by assigning each processor a
different section of a particular program trace and an offset constant to
create disjoint ;ddress spaces. For convenience,.lét X be an integer
number such that 1 <x <4, Then.the four program traces can be specified
by the distinct values of x as follows: x=1 for CCOBOL, x=2 for GAUSS,
x=3 for ECOBOL, and x=4 for EIGEN. Let y represent different write
policies and operating environments. For shared cache, the operating
environments of IIID with write back, IIID with write through, and SIID
with write through are specified by setting y equal to A, B, and C,
respectively. Then, various experiments e;n be specified by (x,y).
Figures 4.3.1 and M4.3.2 {llustrate the effects of write policies and
operating environments on miss ratio. In these graphs, all four streams
are selected from a particular program trace specified by x for each
experiment. The dotted lines show the performance for private cache witL

an IIID operating environment and write back updating scheme.

B O RN T ST 446 X -7

Miss Ratio, (1-h)

= 1, for CCOBOL
= 2, for GAUSS
y = A, for IIID, WB

= B, for IIID, WT

_ =C, for SIID, WT
Dotted Lines: Private, WB

Block size = 8
Set gize = 8

. l
512 1024 2048 4096

Caché Capacity

Figure 4.3.1 The effects of write policies, space
sharing and operating environments on miss
ratio for CCOBOL and GAUSS.

T -

e

172

TN o

S

14
(x,y): x = 3, for ECOBOL 4
= 4, for EIGEN 4
y = A, for IIID, WB L
.12 = B, for IIID, WT
Dotted Lines: Private, WB
n Block size = 8
.10 Set size = 8
”~~
T .08 |-
<
| Y
1 7 :
% 3 06 p= f
3 i
-l i9
g .
.04
.02 |~
.00
512 1024 2048 4096

Cache Capacity

T A YT T P AT s A =LV

Figure 4.3.2 The effects of write policies and
space sharing on miss ratio for EIGEN
and ECOBOL.

|
|

—

173

Note that the difference between (x,A) and (x,B) for a given x is
the miss ratio improvement of write through over write back. The
percentages of write accesses for EIGEN, GAUSS, ECOBOL, and CCOBOL are
8.8%, 9.2%, 28.6%, and 13.1%, respectively. As can be seen, rfor shared
cache, write throdsh always performs better than write back. However,
the amount of miss ratio improvement by write through is not proportional
to the amount of write accessing. In the case of a write access followed
by some read access within a very short period of time, write through may
not improve the miss ratio if both write and read accesses reference the
same block. Hence, the performance for write through may depend not only
on the amount of write accessing but also on the strategy used for

storage allocation.

The effect of dynamic space sharing on miss ratio can be shown by
the miss ratio difference between (x,A) and private cache, i.e. the
dotted 1lines. Clearly, shared cache may not always perform better than
private cache. The diagrams show that space-sharing is good for GAUSS
and EIGEN but not for ECOBOL and CCOBOL. For GAUSS and EIGEN, the
largest miss ratio improvement due to space-sharing occurs at a cache
capacity of 1K. However, in most cases, the shared cache with write

through performs better than the private cache with write back.

Recall that a SIID operating environment is simulated by assigning
each processor its own trace section of a particular program trace and an
associated offset constant. The offset constant is added only to the
data addresses in the assoclated trace section to generate effective

addresses such that the effective data addreas spaces of the processors

174

are disjoint. Then the difference between (x,C) and (x,B) for a given x

illustrates the effect of shared code on miss ratio. Figure 4.3.1 also
shows this effect for GAUSS and CCOBOL. Sharing of programs

significantly reduces the miss ratio for these two program traces even

with different sections. This significant performance improvement may be
§ caused by many commonly used subroutines or by some common subroutines

which are used very often in both programs. Simulation was performed to

! measure the extent of sharing. After a block is loaded into the cache by

a process, it may be referenced by other processes. Such references,
i namely, references to a blcok by processes which did not load that block
in the first place, were measured. All such references to all blocks

were measured as a percentage of total number of hits. These percentages

are 25.2%, 27.2%, 30.4%, and 30.4% for GAUSS with 512, 1024, 2048, and
4096 cache capacities respectively. The percentages are 7.5%, 12.2%,
19.8%, and 23% for CCOBOL with 512, 1024, 2014, and 4096 cache capacities

respectively. The graph shows that the amount of miss ratio improvement

due to shared code is not totally dependent on the amount of shared code.
GAUSS has a higher percentage of requests referencing the shared blocks
than that of CCOBOL. However, the amount of miss ratio impovement due to
% shared code is larger for CCOBOL than that for GAUSS. This result may be
‘ explained by noting that the miss ratio 1mprovement due to shared code is

also dependent on the distribution of the references to the shared code.

A larger amount of shared code may not improve the miss ratio

significantly if the intervals beiween references toc the same shared
block are very large. In addition, the miss ratio improvement due to

shared code 1s dependent on the number of blocks required to duplicate

175

code for private cache systems.

Figure U4.3.3 shows the miss ratio comparisons between shared cache
with different write policies and private cache with write back for the
workload of mixed program traces. In this case, the four streams in the
IIID operating environment are formed by selecting the first trace
section from each program trace. As can be seen write through performs
significantly better than write back for all cache capacities. This
graph also shows that space-sharing is better than fixed space
allocation. Although it seems that a mixed program workload is more
suitable for shared cache than the workload with all streams having
similar program ehéracteristics, it 1is too early to reach a firm
conclusion because the interaction between program localities under

dynamic space sharing are still unclear.

Table 4.3.1 illustrates the effect on miss ratio of an increase in
the number of streams as *he cache capacity 1is also increased
proportionally. The last column, trace section, in table 4.3.1 indicetes
which trace section of each program trace is used. Hence, trace
saction=1 for sp=4 means the first trace section of each program trace is
used, 2 means the second trace section of each program trace is used.
For sp=8 and trace sectionsi, the first trace section of each program
trace is used to form four distinet atreams. However, the other four
streams are also formed by the same four trace sections but with distinct
offset constants to create disjoint spaces. Both the first and second
trace sections of each program trace are used to form distinct streams

for sps8 and trace seationz(1,2). Note that the IIID operating

BPAP I Moo Sy . TR e, PN PR B T2 ¥ regrst ot

Tt

R T ey

Miss Ratio, (1-h)

.14

.12

.10

.06

176

Shared
S===== Private

A: IIID, WB
B: IIID, WT

Block size = 8
\ Set sgize = 8

512 1024 2048 4096
Cache Capacity

Figure 4.3.3 Miss ratio comparisons between shared
cache and private cache for workload of mixed
program traces. }

el o TR T e e e o T T T Y - o Y o o R Y Y R o T R N e s ©

IR T o T B R S B SR S A A

@ G 0 o o oo 0o 00 W 00

The effect of simultaneous increasing both
cache capacity and number of streams on

miss ratio.

Set
Size

8
16
8
16
8
16
8
16
8
16
8
16
8
16
8
16
8
16
8
16

Cache
Capacity

1024
1024
2048
2048
1024
1024
2048
2048
1024
1024
2048
2048
2048
2048
4096
4096
2048
2048
4096
4096
2048
4096

Table 4.3.1

Shared/
Private

shared
shared
shared
shared
shared
shared
shared
shared
yrivate
private
private
private
shared
shared
shared
shared
shared
shared
shared
shared
private

private

(L - h)
.043
061
.015
.013
.089
.088
.043
.042
.072
.074
.030
.030
. 046
.039
.016
.013
.067
.065
027
.026
.085
.038

Trace
Section

1

— o e = e S N RN N e e

(1.

(1

rA)
2y

2

2

" -

177

178

environment is considered for all experiments in table 4.3.1. Also,
write through is used for shared cache and write back is used for private

cache.

Although shared cache always performs better than private cache, a
simultaneous increase in both cache capacity and number of streams above
four for shared cache does not improve miss ratio any further. For
example, the average value of miss ratios for four streams obtained from
row 1 and row 5 is 0.066, but the corresponding miss ratio for eight
streams, row 17, is 0.067. Note that shared cache may perform better
than private cache because space-sharing can yield some benefit if some
processes need large spaces while other processes need small spaces.
However, the space occupied by a process 1is a function of time. No
performance improvement or even worse performance may result if a large

space is simultaneously desired by several processes.

The space allocated to a process according to its program locality
cannot be easily measured in our simulations. However, an indirect
measurement, such as the changes in hit ratio over time, may be used to
infer the changes of space desired. From an increase of hit ratio during
the interval (t,t+ At) we may infer that fewer blocks of space are
required in this interval. Similary, if hit ratio decreases we may infer
that more blocks are required. Since a high hit ratio may imply either
the process occupies a small number of biocks because it is in a small
tight loop or the process occupies a large number of blocks and most

required information is already in the cache, the blocks of space

allocated to a process cannot be inferred from its hit ratio. However

R

navnsy

. sint

PO

179

the changes of hit ratio for a process may show the block space needed by
this process, If the hit ratio increases for a process while the hit
ratio decreases for another in the same time period, space-sharing may
result in some benefit during that time period. Since the modified LRU
replacement algorithm in each set takes advantage of program locality,
the block replaced by some process should be unlikely to be referenced in

the near future by its original owner process.

Figure U4.3.4(a) shows the hit ratio vs. time for a private cache of
256 words. Separate experiments have been carried out for the first
trace section of both EIGEN and GAUSS. In figure 4.3.4(b), the solid
line curve illustrates the hit .ratio obtained by using the same two trace
sections for a shared cache of 512 words and the dotted line curve shows
the average value of the two hit ratios shown in figure u.3.u(a).' Note
that time 1s measured by the number of references. For private cache,
the observation period is 100 references and the hit ratio at each
observation point is the fraction of requests resulting in hits within
previous 400 references. However, for shared cache, the observation
period and the average period are double. Since shared cache executes
interleaved instructions from two streams,.the time moment t in figure
4.3.4(a) corresponds to the time moment 2t in figure 4.3.4(b). In order
to highlight the effect of space-sharing on hit ratio, we use write back,
fixed block size (=8), and fixed set size (=4) for both shared cache and

private cache.

As shown 1n figure 4.3.4(b), shared cache performs better than the

average of two private caches during the periods A, C, and D. During

AD-A124 387 SHARED CACHE ORGANIZATION FOR MULTIPLE-~STREAM COMPUTER
SYSTEMS{U) TLLINOIS-UNIV AT URBANA COORDINATED SCIENCE
LAB C YEH JAN 81 R-904 NOO039-80-C-0556

UNCLASSIFIED F/G 9/2 NI

L .

END

i)

1-83
oTic

O |
FEEFEEE 4

EEEE
EEE

I
2 i

—
.
—
{4
L3

fe

S
e

l||||>
=
B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

180

1R

103 9yoed ajeafld woxy pauyelqe Swyl °SA 0FIRI ITH

*SSAVD pue NADIA
(e)y g4y 2and1d

(01) soousaajsy jo isqumy

€
0°01 §°L 0°S $'z 0°0
| _ | _ L
4 = 9218 39§
SSAVD _ _ _
N9 13 .

y ‘ofaey ITH

i
r

-

Sk

T TN

‘owyy +sa (B)Y'EY 2an813
103 01381 3Ty 98pa3ARP 9yl pur IYoed paaeys Xoj oriIex ITH Q)¢ 2an81d

(MOA) sedouaxejsy jo IoqunN

0¢ St o1 1] 0

[[I [“

.—N = 9ZY8 J°s

- 988I0AY ~ — - ~

paxeys

q ‘otied 3ITH

182

period B, shared cache performs slightly worse than the average of two
private caches. In figure 4.3.4(a), it is seen that during most of
periods A, C and D one hit ratio goes through a peak while the other hit

ratio goes through a valley, i.e. positive slopes tend to match negative
slopes. During most of period B in figure 4.3.4(a), both hit ratios go
down. Since both streams require more blocks of space during period B, a
worse hit ratio for shared cache may occur if one block replaced by some
process is referenced soon by its original owner process. Note that the
shared cache gives almost the average hit ratio during the first few
thousand references. This coincidence occurs since the cache 1is empty
initially. During the initial period, the high miss ratio is primarily
caused by filling the cache, instead of by space contention, and the
space-sharing has less effect on performance. In this example, the
stationary miss ratio averaged over 25 thousand references for shared
cache is 0.044 which gives a 13.1% improvement over private cache (miss

ratio=0.051).

Similar experiments have been done_for the first and second trace
sections of EIGEN. The hit ratios vs. time are shown in figures
4,3.5(a) and 4.3.5(b). As can be seen in figure 4.3.5(b), shared cache
performs worse than private cache during the periods A, C, and E in which
figure U.3.5(a) shows that both hit ratios go through peaks. Figure
4.3.5(b) also shows that shared cache is slightly better than private
cache 1in periods B and D in which figure 4.3.5(a) shows that one hit
ratio goes through a peak while the other hit ratio goes through a

valley. During period F, one hit ratio diagram goes down while the other

R AP PP T T ot 1 25 | o

183

3Yy3 yjoq 103 syoed> 9jeatad wWoly pauleIqO SWY] -SA OTIBA ITH

‘90p1) weiBoad NIHIF JO SUOTIOIS 3IORA] PUODIIB pue 3ISIATJ

(mo~) s9dousaszay jo xoquny

L A 0°S 6°¢

(e)g gy vandyy

I R |

= 928 39§
(Z) NI913

(1) N3917

P Iet>» 0 o+) «—— 8 > V &t—» 4 «—

N.

©

y ‘oy3ey ITH

184

[I R L T

‘awl) ‘SA (B)G gy 2an81)
103 o1jea ITY 93eIdArR O] pur IYoed poaeys 103 ofIex ITH (q)¢ gy andyd

(mca) saduaasgey jo Ioquny

0c¢ St 01 S 0

[_ _ T .

4 = 2z18 39§

?8vadAY —- — - -

paxeys

3t Q0 2> J «+— 8 «—— V <« 4«

y ‘oy3ed ITH

0°1

185

) keeps almost constant as seen in figure U4.3.5(a). An almost average
i, value is seen in figure 4.3.5(b) for shared cache during the same period.
.- The stationary miss ratio averaged over 25 thousand references for shared

: cache is 0.063 which is 13.2% worse than the private cache (miss

ratio=0.056).

Figure 4.3.6(a) and 4.3.6(b) show experiments using the first trace
section of both EIGEN and CCOBOL. The shared cache results in almost the

same hit ratio as private cache. This coincidence occurs since the

CCOBOL program results in large variations in hit ratio during relatively
- short periods of time as shown in figure 4.3.6(a). Many large variations
in hit ratio within short time periods may be considered as rapid and
frequent changes in program working sets. In this case, the blocks of
siace allocated to the process change their qontent rapidly and
frequently. Then the effect of space-sharing on hit ratio is less
significant since the hit ratio may be dominated by the changes in
program working sets. The stationary miss ratio averaged over 25
thousand references for shared cache is 0.113 which is 4.6% worse than
the private cache (miss ratio=0.108). Although not shown here, the hit
ratio curve for ECOBOL has a similar shape to that for CCOBOL. This
program behavior of rapid and frequent changes in working sets for both
CCOBOL and ECOBOL may also explain the reason that shared cache sometimes
performs worse than private cache for an IIID operating environment with

g, all streams having CCOBOL or ECOBOL program characteristics as shown in

figures 4.3.1 and 4.3.2.

In summary, our experiments show that shared cache may perform

X LOW R, SCIVECY

/.-—--—"
-
‘::--

Sea
-
- - -——

-
ek 1)
P L
-

<

.-.-.---.---..b

EIGEN

— — =~ — CCOBOL

Set size = 4

l
2.5

1.0

-] -]
L]

Y ‘o13e¥ 3ITH

.7

10.0

7.5

5.0

0.0

3,

Number of References (10

Figure 4.3.6(a) Hit ratio vs. time obtained from private cache for EIGEN

and CCOBOL.

186

= 2

Srgme " mer rEEgr

187

owyl °sA (B)9-g*H 2an31J
103 O0F3jea 374 93BI8ABR 9yl PUEB SYOEWD poIeys 103 oflex ITH (q)9'g°y dandyg

(noﬁ) s9ouax9ysy Jo IsquMN
114 02 <1 ol c 0
| | I [L

4 = 9218 39§

98BADAY - - — — -~

paaeys

qy ‘otaey 3TH

01

188

better than private cache if a workload of mixed programs instead of a
workload of all programs having similar characteristics is used.
However, space-sharing may not yield any benefit if the mixed program
workload contains some streams with the program behavior of rapid and
frequent changes in working sets. Experiments also show that shared
cache may be better than private cache if a small space need matches a
large space need most of the time. No miss ratio improvement or even
worse miss ratio may result for shared cache if large space needs happen
frequently at the same time for several streams. For shared cache, write
through policy always performs better than write back policy. In most
cases, shared cache w}th write through results in a smaller miss ratio

than that of private cache with write back.

The above observations are based on the results of our experiments.
It was shown that shared cache might perform worse than private cache in
some cases since the LRU replacement algorithm in each set could not make
an advantage out of space contention. 1In order to derive an effective
shared-cache management policy, more research on dynamic space sharing is

necessary.

4.4 validation of the Models

The effects of various parameters on the miss ratio have been
discussed in the previous two sections. In order to isolate the effects

of cache access conflict on the miss ratio, the cache cycle, ¢, and the

block transfer time, T, were set to zero and the number of processors, p,

1T AP, ANSP A e

EEe e e s

S

N e g e D PRI

. SRR, g AP ot

e A d i)

e

. -y
s s

———

—— .

189

was set to one in previous experiments. In this section, the analytical
models for both shared cache and private cache will be verified by
comparing the analytical predictions with the simulation results. Due to
the simulation costs, it 1is impractical to verify every possible
combination of all parameters for each model. Only several cases for

each model will be verified.

For a given hit ratio, the analytical models developed in chapter 3
predict system performance by evaluating cache access conflict. To
verify the analytical models, the hit ratio should be treated as a given
parameter and only the effects of cache access confliet on performance
need to be verified. Hence, the cases chosen to verify the models in
this section are the extreme cases of high and low cache access conflict.
In figure 4.2.2, a shared cache memory of 1 K cache capacity and block
size = set size = 8 results in a miss ratio of 0.043 for four streams.
This miss ratio is measured under no cache access conflict. Simulation
experiments are repeated for this cache organization to simulate the
system of a single pipelined processor with four segments, i.e. p=1 and
szl, under various access conflict situations. A shared cache memory of
2 K cache capacity and block size = set size = 8 results in a miss ratio
of 0.067 for eight streams under no cache access conflict, shown in table
4,3,1, is chosen to study the effect of multiple access 1line collisions
on the analytical predictions. This particular cache organization is
used to simulate the system of ; parallel-pipelined processor of order
(2,4). Since the simulation termination time is proportional to the

total number of streams in the simulated system, a small number of

segments, i.e., 2, is used in some cases to reduce the simulation costs.

i
1

190

In our analytic models, it was assumed that cache hit ratio is
independent of cache access conflict and cache memory references; are
independent and uniformly distributed. These assumptions are verified
below by comparing the analytic predictions with simulation measurements.
Let the miss ratios measured under no cache access conflict be denoted as
(1-h‘) and the miss ratios measured under various cache access conflicts
be denoted as (1-h). Let (1-hd) be the dynamic miss ratio derived from
{1~h). Let D, represent the ratio of (1-h) to (1-h') and D, represent
the relative performance, CPU utilization, of analytical prediction with
respect to simulation measurement. Note that the difference between
(1-h') and (1-h) shows the deviation of program static miss ratio caused

by cache access conflicts. However, (1-hd) is the dynamic miss ratio for

, the given program static miss ratio 11-h). The CPU utilization predicted'

by an analytical model is obtained by plugging (1-h) into the analytic
equations for model A. However, for model B, the dyramic¢ miss ratio,
(1-hd), is used to evaluate PAh and PAm and then performance is obtained
by using (1-h), PAh and PAm in the equation for Cu given by theorem

303.2-1n

Table 4.4.1 and table U4.4,2 illustrate both the analytical
predictions and the simulation measurements for modeli A& (implicit lookup
table) and model B (explicit lookup table), respectively. These tables
show that the percentages of deviation of miss ratios due to the cache
access conflicts vary from 0.0% to 11.9%. Larger deviations occur at
longer block transfer times. In general, (1-h) is 1less than its

»
corresponding (1-h) since reference patterns may be altered due to cache

Oy

T, e

191

8ZL°1
¢60°1
9lz'1
8ST°1
9/0°1
¢S0°1
880°1
¢L0° 1
(400 §
701
S16°

896°

95¢* €6v° 968" 090" L90° 8%0T €
%eLT TL9T ove' €90° L90° 8402 € e
867 S¥Z° 0% €90° L90° 8402 v oy
oy s8c” OL6" 90" L90° 8702 v
089° €9 0E6° OWO° E€%0° 4201 o ¥
o18° 0L ¥S6 1% €ho° 4201 9 ¥
¥$9° 109° 0E6° 0% E%D° 7701 8 ¥
oL 8L L6 T €MO° Hz01 8 v
908" %9L° L06° 660" €0 %Z01 o1 o1
06° 698" L6 IO €W Y701 91 ot
@y LZs 000°L €W €907 4201 11
669° ZzL° 0001 €90 €%0° 4201 11

Ctewy) @) ' D (uwD Lo N 7
nH n) ayoe)

(g = 9218 YO0[q = 9ZI8 398)
V [2pow 103 ddupuxojiad uo
31971 JU0D S82028 dYIED JO 3I09JF9 IYL

1°%'% S1qel

0¢

0¢

0¢

114

0c¢

0¢

e =~ NN NN ™ e

3]

T T T NN NN

St o

e T T T T B B R T S e 3

-9

e g

e e e R N e = e

Hir Wm b g s

180°1 795" 0zs’ 188" 650" 650" L90° 8402 € € o0z 1 T ¥
€90° 1 seL” soL- 11 %90° %90 L90° 8402 ZE € 8 1 AN
S81°1 Toe” A1 656 90" %90° L90° 8402 Y % o0z 1 T ¥
9€1 "1 65" Yy 0L6° S90° $90° L90° 840¢ ¥ % 8 1 [N
9%0° 1 89" zs9° 56" 6%0° 190" €%0° %201 91 % o0z Tz % 1
S20°1 818" 861" 56" 6%0° 1o° €Yo %01 91 % 8 T % 1
850" 1 959" 029’ 56" 9%0° 190" £%0° %201 8 % o0 ¢ % 1
6€0° 1 08L° 157 LL6’ LYo’ ¢ho” €Y0° %201 8 % 8 7 % 1
2201 08" S8L" 0€6’ 00" 040" €40 %201 91 91 o0z 1 % 1
200°1 L06° 06" LL6° AL AN €90 %201 91 91 8 1 ¥ 1
S16° T6Y” 8€S° 000°T €%0° £y’ £y %201 1 1 oz 1 % 1
696" 1L 9L 000°T E€%0° €%0° €40 %201 I 1 8 1 % 1

%a (*teuv) (“wys) Tq Pu-v) -0 (4-1) A3poeded) N 7 1 > g d

no nd ayoed

(g = 9218 Y}do01q = 9216 398)
d 19pow I03j acuswxojaad uo
3011 JUOD S$9008 YOO JO 3IO3JI3 IYL

< v'h 2iqel

ST

Ty e e s

a

~——
-

193

access conflicts. A miss request under no cache access conflict may
become a hit request under cache access conflicts. For example, assume
that a reference sequence contains some miss requests followed by a
particular request k under no cache access conflict. Assume also that
they all reference the same set. Furthermore, assume that request k
results in a miss under no cache access conflict because the block
referenced by request k is replaced by its former miss requests. Due to
the changes of reference patterns under cache access conflicts, request k
may be accepted prior to those miss requests by the referenced set (or
module) and result in a hit. Hence miss ratio may be reduced under cache
acess conflicts. Although the relative deviation of miss ratios can be
as high as 11.9%, the relative amount of deviation is small. The high
values of the percentgge indication are due to the small value of
(1-n™). As can be seen, the percentage of deviation of the hit ratios,
rather than miss ratios, for all cases in both tables is less than 1%.
The cache access conflicts do affect the cache hit ratios. However, the
amount of deviation of the hit ratios due to the cache access conflicts
is small. Therefore, the assumption that hit ratio is independent of
access conflict should not introduce a significant deviation in the

analytic predictions.

The last column in both tables shows the performance of analytical
predictions with respect to simulation measurements. The magnitude of

D2 varies from 1.002 to 1.216. In general, the simulation 3hows 1lower

performance than the corresponding analytic results for £ >1. 1In

addition, as Cu decreases, the performance difference between the

b

»'-

194

simulation and analytical results becomes more apparent. In the
simulation experiments, the blocked requests are resubmitted with the
same addresses one instruction cycle later. Hence the address
distribution is not uniform and there is a tendency to reference lines
and modules that cause rejections more frequently without success.
Therefore, the probability of rejection is higher for the simulation
experiments. However, the percentage of performance difference is less
than 5.2% if the CPU utilization is higher than 0.77. Therefore, the
assumptions that rejected requests are discarded and references are
uniformly distributed do not cause a significant deviation of the
analytic model from reality for systems with a reasonable performance.
Note also that the percentage of performance improvement of model B over

model A is less than 5.5% in all the cases listed in both tables.

A simulator for p processors and N main memory modules system with p
private cache memories was written by Patel [63]. A random number
generator is used to generate both cache and main memory requests. A
main memory request is generated immediately after a cache miss has been
detected. A blocked main memory request due to access conflict is queued
in the buffer, instead of discarded. A buffer is associated with each
main memory module. Each instruction cycle an outstanding main memory
request is chosen from each nonempty buffer. Assume that there is a
cache controller associated with each private cache. After a main memory
request is made by a cache controller, this cache controller will not
make any new request until the previous request has been served. Table

4,4.3 shows the analytic and experimental results. Note that T"

(R4

195

Table 4.4.3

Performance for private cache systems (£ = N)

P ™ 1-h Cu(Sim) Cu(Anal.) D

2 2 .500 472 454 1.040
2 2 .250 .647 .640 1.011
2 2 .125 .790 .789 1.001
2 2 .063 .885 .884 1.001
2 2 .031 .938 .941 .997
2 2 .016 .969 .969 1.000
2 8 .500 .162 .172 .942
2 8 .250 .294 .301 .977
2 8 .125 467 477 .979
2 8 .063 .658 .653 1.008
2 8 .031 .804 .797 1.009
2 8 .016 .891 .885 1.007
8 2 .500 .436 446 .978
8 2 .250 .628 .635 .989
8 2 .125 .785 .787 .998
8 2 .063 .885 .884 1.001
8 2 .031 .939 .940 .999
8 2 .016 .969 .969 1.000
8 8 .500 . 142 .170 .835
8 8 .250 .260 .301 .864
8 8 .125 429 .476 .901
8 8 .063 .623 .653 .954
8 8 .031 .785 .797 .985
8 8 .016 .884 .885 .999

196

represents the block transfer time rélativo to the instruction cycle and
D represents the relative performance of analytic prediction with respect
to simulation results. The large performance differences between
analytic predictions and simulation measurements occur at very low values
of performance. In table 4.4.3, this performance difference is less than
14 for systems with CPU utilization higher than 0.8. Therefore, the
deviation of analytical predictions from the simulation results is

negligible for reasonably high performance systems.

The effects of cache access conflicts on system performance for a
given hit ratio will be studied with various parameters in the following
five sections. In order to highlight the effects of cache access
conflicts on performance, the effect of cache hit ratio on performance
should be isolated. This can be done by choosing a high value' of hit
ratio. In the following discussion, a hit ratio of 0.98 is chosen for
studying the performance degradation due to cache access conflicts. A
given hit ratic may be obtained by choosing different combinations of
cache capacities, block sizes, and set sizes. However, the effects of
these parameters on hit ratio have already been discussed in the previous
sections. Hence, it is simply assumed that a fixed hit ratio of 0.98 1is
given without explicitly specifying the cache capacity, the block size

and the set size in the following five sections.

In this section, we have shown that the simulation results were not
significantly different from the analytic predictions for reasonably high

performance systems. Since we are interested in high performance

systems, the following discussions are based only on the analytic

e et Tl S TI R W

197

predictions. Also, since the analytic results for model A and model B
are almost the same for the range of parameters to be studied, only the

analytic results for model A are discussed in the remainder of this

chapter.

4.5 Effect of the Number of Cache Modules (N) on Performance

Various cache memory configurations, i.e. (£,m), can be obtained
for a given cache capacity. By varying the size of the cache memory
module for a given cache capacity, the total number of cache memory
modules, N, can be varied. In order to keep hit ratio constant, we
assume that the cache capacity is constant for a given p and h. For
practical reasons, the total number of cache memory modules cannot be
arbitrarily large for a given cache capacity because of the availability
of only certain memory chip sizes. However, as the effects of the number
of cache modules on the performance are studied, the practical limitation

on the memory module sizes is not considered here.

Figures 4.5.1 and 4.5.2 illustrate the effect of N (2 L) on CPU
utilization for £=4 and 16 respectively. In general, an increase in N
increases the performance for given £, p, h, T, and ¢ { >1). For c=1,
the number of cache modules, N, has no effect on performance because

there is no busy module collision. Recall that the lower bound on P of

corollary 3.2.3.1.2 is

CPU Utilization, Cu

1.0

] 11 1 |]] |

1 4 8 16 32 64 128 256 512

Total Number of Cache Memory Modules, N

Figure 4.5.1 Effect of N on Cu for L = 4.

1024

198

T A PRI -

ST '*Mww-—.mm—ﬁ;\u-.,

R T v e

o

{ 199
i
1.0
; T =16
T = 32 c =1 | ;
I h = .98 ;===" v
¢ =15 S et T
.8]
Y E
‘.6
A
S
g 5 =
Gl
L)
&b
8
B
-l
& p
S :
B s
: -
* i
1
| 5
o I DR NN A NS SR B 4
1 4 8 16 32 64 128 256 512 1024
Total Number of Cache Memory Modules, N :

Figure 4.5.2 Effect of N on Cu for L = 16.

200

lN(l-Pl)

LN + Np(1-P) (1-h) (T+e-1) + £ph(1-P) (c=1)
. (1-P),
P (1. - - ph . _ T
1+§ (1-P) (1h) (THe-1) + & (1-P)) (e-1)

-p. = [1-(1- L+)P &
where 1 Py [1-(1 N)71 >
As N approaches infinity and h is high, the lower bound becomes,

4in'P, = (*-p,)/[1 +2P. (1-P)) (1-h) (T+e-1)]

N =

From the above limiting expression, it is seen that for large N and
h, the cache memory cycle, ¢, does not have a significant effect on
PA or Cu. Hence, for large N and h, Cu is limited by £ , p, and T. The
graphs also show that the block transfer time, T, highly affects Cu.
This effect becomes larger for ¢ 1 as N increases. As an illustration,
consider figure U4.5.1, which is for ¢ =4. Suppose that p=1 and Cu is
required to be 0.75. Using (e¢,T)=(3,32), N is required to be at least
256, whereas, if (¢,T)=2(3,16), N may be as low as 16. In either cass, N

is significantly larger than pc.

If the block transfer time, T, is primarily deminated by the main

memory cycle, i.e. the only way to reduce T 1is faster main memory,

another tradeoff between ¢ and T for each p can be found in the graphs.

T TV A [TR AR s M

e T Y b bt

:u-»,

201

A system with slow main memory and fast cache memory may perform better
than a system with fast main memory and slow cache memory. For example,
consider figure 4.5.2, for which £ =16. Suppose that p=16 and cache
memory can at most be divided into 64 modules due to practical
restrictions on the module size for a given cache capacity. Then the
performance obtained by using (¢,T)=(1,32) is higher than that obtained
by using (c¢,T)=(3,16). In addition, §he cost of a system using
(¢,T)=(1,32) may be cheaper than the cost of a system using (¢,T)=(3,16).
Since the size of the main memory is usually much larger than the size of
the cache memory, speeding up the main memory may then be much more
expensive than speeding up the cache memory. However, the reverse

tradeoff will be true for this example if N=128 is allowed.

Figures 4.5.1 and 4.5.2 show that there is progressively less payoff
(increase in Cu) from increasing N for large £ and small p, and for
small ¢ and large p. On the other hand, there is some significant

payoff to increasing N as £ is close to p in both models.

4.6 Effect of the Number of Lines (¢) on Performance

Intuitively, an 1increase in L reduces multiple access 1line
collisions and busy line collisions and therefore increases performance.
Figures 4.6.1 and 4.6.2 illustrate the effect of the number of lines on
performance for N=64 and cs3 and for N=1024 and o=1,respectively. The
graphs show that poor and undesirable performance occurs in the region

4 ¢p. For i «<p, the performance is extremely low because of the

CPU Utilization, Cu

202

1 2 4 8 16 32 64

Number of Lines, £

Figure 4.6.1 Effect of ¢ on Cu for N = 64 and ¢ = 3.

=2
(&
L
&
=]
-
&
L]
N
ord
-
-
&
=
(&)

| | | L

16 32 64 128 256
Number of Lines, £ '

Figure 4.6.2 Effect of £ on Cu for N = 1024 and ¢ = 1.

204

excessive multiple access line collisions. Hence in this region there is

very little payoff in performance to doubling £ .

There is a point of inflection at 2 =p. 1In general, for L in the
neighborhood of p, Cu is most sensitive to increases in £ and a
significant increase in Cu occurs for small increases in £ . 1In the
region of s >>p, multiple access line collision probability P1 is close
to 0 and therefore probability of acceptance PA is close to 1. Hence the
performance is limited only by (1-h)T", where T":fi/s]is the block
transfer time in number of processor cycles. There is little payoff in
performance to increasing # for small (1-h)T" because the performance is

almost saturated. In this case, the asymptote is ' 1
Cu =
1 + (1=h)T"

3;1 Effect of Cycle Characteristics on Performance

An increase in the block transfer time, T, increases the busy line
collisions and the waiting time for cache misses, whereas, an increase in
the cache memory cycle, ¢, increases busy module collisions. However,

these effects are very small when £ and N are sufficiently large.

In general, the block transfer time may be a function of the cache
cycle time. An increase in ¢ may result in a larger T. However, the

block transfer time is also a function of block size, number of modules

per line, main memory cycle and main memory bandwidth. Hence, fixed T

205

can be obtained by adjusting Chese other parameters when ¢ varies. 1In
this section, the effects of ¢ and T on performance will first be
discussed separately by varying each one while holding the other
constant. Then, the combined effect of a simultaneous increase in ¢ and
T is illustrated. It should be noted that ¢ cannot be arbitrarily large,
since the model requires the degree of pipelining, s, to be larger than

Ce

The effect of T can be explained somewhat analytically by using the

lower bound formula, i.e. corollary 3.2.3.1.2,

(1-1’1)

ph(1-P) (c-1)

1 +.§. (1-h) (1-P,) (T+e-1) +]

In order to highlight the effect of T on performance, it is assumed that
4 << N and c << T. Note that T has two effects on performance, namely,
miss penalty and busy line collision. For small £ such that £ << p,
PA. ~ 4/p for high h, The performance degradation in this region is
primarily due to the excessive multiple access 1line collisions. Hence
the performance, Cu, is very sensitive to the variations in s but
-insgnsitive to the variations in T for £ < p. As 4 increases to p,
P, = (1-P4) /7 {1 + (1-P4)(1=h)T] and therefore the CPU utilization Cu =
1/[1/PA + (1-h)T"] can be approximated as Cu=~1/ [1/(1=P4) + (1-n)(1 =+
1/8)T] for large N. The performance is very sensitive to the variations

in both T and £ for £ near p. In other words, system performance is

ecritically dependent on the effects of miss penalty, busy line collision,

206

and multiple access line collision for £ ~ p and large N. For ¢ >> p,

Py

insensitive to £ but sensitive to miss penalty, (1-h)T". In this

~ 1 and Cu=~1/ [1 « (1=h) T/s] for high h. The performance iz then

region, the effect of access conflict on performance is insignificant and
the performance is almost entirely dependent on miss penalty. Hence, the
block transfer time, T, affects the performance significantly for 2 > p.
Figure 4.7.7 illustrates the erfects discussed above. Note that an

increase in ¢ shifts the curves down.

Figure 4.7.2 shows the effects of cache memory cycle, ¢, on
performance. It was shown in section 4.5 that performance is less
sensitive to ¢ for large N. The sensitivity for N=64 is illustrated in
figure 4.7.2. Figure 4.7.3 illustrates the combined effect of a

simultaneous increase in ¢ and T for T/c=8.

In general, if N is large enough, variations in ¢ have little effect
on Cu for any configuration. If £ is 1large or s is close to p,

variations in T have a significant effect on Cu.

4.8 Effect of the Number of Processors (p) on Performance

The choice of p is very critical to obtaining reasonable
performance. The sensitivity of PA to p can be evaluated for some class
of p as below by employing the lower bound formula, i.e., corollary
3.2.3.1.2, for PA' For p>>t , (1=-1/)Rzo and (1-?1) ~ L/p. Hence, the

lower bound formula is approximated as £/ pl1 + (1=h)(T+c-1)], for

S B v atoas i e

R i L

A gt RS e S

! 207

CPU Utilization, Cu

8 16 24 32 40 48 56 64 72
Block Trangfer Time, T

B A
p— .
A i

Figure 4.7.1 The effect of T on Cu for N = 256 and ¢ = 1.

L TR e s

1.0

.7
o
Q
iy .6
Q
ol
Fs)
]
X 5
[aa]
ol
e
= 4
E .
Q
.3
.2
.1
.o

i it

h = .98
p=4é
o N = 64
M
-
N
=
—— z = 4
r
- L =1
| 1 |
(1,16) (2,16) 3,16)

Figure 4.7.2

Cycle Characteristics, (c¢,T)

The effect of ¢ on Cu for N = 64 and T = 16.

208

@ 209

-

N =25 h=.98

. T/e=8 p=4
26

CPU Utilization, Cu
w
|

.0 ! 1 L
(1,8) (2,16) (3,24)

Cycle Characteristics, (¢,T)

Figure 4.7.3 Effect of (¢,T) on Cu for T/c=8 and N=256.

——y
+ .

210

large N. Furthermore, if h is high and T is small, then the lower bound

formula 1is approximately reduced to L/p. Hence, both P, and Cu are

A

small in this region. Asymptotically, both P, and Cu decrease to zero if

A
p increases without 1limit. However, for p <<f, (1-1/£)P 1.p/Lt and
(1-Py) ~ 1. Therefore, in this region, the lower bound formula for
P, becomes approximately LN / { 2N + pN(1-h)(Tec-1) + p Lh(c=-1)]. For
large N and h and small T, P, is close to 1. An increase in p does not
affect PA and Cu significantly as long as p << 4, h is high and T is

small.

Figure U4.8.1 illustrates the effects discussed above. Note that Cu
is most sensitive to p for p in the neighborhood of £. Some tradeoff
between 1 and T for certain p can be found in figure 4.,8,' For
example, given p=8, a system with ¢ =256 and (¢,T)=(1,32) results 1in an
almost the same performance as that of a system with ¢ =64 and
{(e¢,T)=(1,16). Then the tradeoff between 2 and T can be determined by
the costs of different-sized crossbhar switches and different-speed

memories.

The total system throughput per instruction cycle, pCu, may be a
usuful performance indicator to understand the effects of p on entire
system performance. Figure 4.8.2 illustrates this effect for cz1. For p
<«<{, PA is close to 1 and an 1increase in p increases the system
throughput almost linearly. However, for p >>{ , the curves become flat

and no significant further throughput improvement can be achieved by

increasing p.

; - 211

1.0 - mme T = 32

o=z
"
N
wn
o

CPY Jtilization, Cu

Number of Processors, p

Figure 4.8.1 Effect of p on Cu for N=256 and c=1.

212

T = 16
0~ o T=3 § 1y
h = .98 " ,’ /
N = 256 - / / g
c=1 ! ! 4
1/]~
1/t
1/ 1
. 15 = ! /
! 2 oy
‘ 8 /1
/i
f 6
! 3 / /
w10 (e //
£ ,]
& / ’,’
§ / /,/f/
u>:‘ // //
-~ / // §
3 / p
g e
5 - ‘/’ e
%/ -
//
’// L=4
-
2 ________-v--'-'-"-“"“""""'“"‘
=== L =1
1 ! 1 i i i
1 2 4 8 16 32 64 :
Number of Processors, p g
i
é

g Figure 4.8.2 Effect of p on pc for N=256 and c=1.

213

Although not shown here, an increase in ¢ shifts the curves down.
An increase in N shifts the curves up because decreasing ¢ and increasing
N result in a similar effect on performance. Note that the total system

throughput is monotonically nondecreasing as p increases.

In summary, PA is close to 1 and neither P, nor Cu are very
sensitive to small variations in p for p <<f. Hence, the total system
throughput increases almost linearly with p. As p 1increases to (,

P, becomes very sensitive to variations in p and there is a point of

A
inflection in both the Cu and pCu curves in this region. Once p>y¢,

both P, and Cu decay asymptotically to zero as p increases further. In

A
this region, the total system throughput curves flatten.

4.9 Effect of Processor Speed on Performance

In the analytic models and simulation experiments, the segment time
unit, T, was not explicitly considered. In this section, the effects of
processor speed on performance are discussed for three different cases.
Recall that the cycle characteristics, (e¢,T), used throughout this thesis
are measured relative to T . Let (co,ro) denote the absolute cycle

characteristics, then ¢ = [col‘r and T = [To/-r] .

Since decreasing T also incrsases the rate of requests to the cache
memory, Cu is not an appropriate performance indicator of the effect of

7. Instead, the absolute throughput, pCu/T , is adopted as a measure of

performance in this section. Note that the delays due to bussing and

o

s P Py T AT T TP

214

crossbar switching were assumed to be transparent in all models. In this
section, it is assumed that these delays are so small that they are still
transparent within the range of processor speed to be studied. Since
there 1s no exact solution for PA in the general case, the lower bound

for model A is used in the following discussion.

For the case of a constant request rate assumption, the number of
processes which request cache memory within one cache memory cycle 1is
fixed at I, as T varies. Then Iy = pe. Therefore, doubling the speed
of processor (halving T) doubles ¢ and requires that p be halved in
order to keep I, constant. Figure 4.9.1 illustrates the example I,=4,
h=0.98, (c,,Ty) = (200,1600)ns, N=256, and p goes from 1 to 4 as T goes
from 50 to 200 ns. Observe that an increase in the speed of the
processor (decrease in T), increases the throughput for configurations
with small £. The increase in the throughput for small 4 is primary
due to the effect of fewer multiple access line collisions while reducing
p simultaneously as the speed is increased (r is decreased). Note that
lines must be faster (as T decreases) since address hgld time, a, still
equals one. For large values of £, an increase in the processor speed,
reduces the throughput slightly. Although a reduction in p reduces the
multiple access line collisions, the busy line collisions xnd busy module
collisions are increased due to the effect of increasing (e,T)
simultaneously as the speed is increased. Therefore, the reduction in
throughput for large { as T decreases is due to a combination of the

ocontrary effects of reducing p while increasing (c¢,T) simultaneously as

the speed is increased. The multiple access line collision is negligible

LL"E

——y
.

215

I oy T TN

20 fw=
«i: £ = 256
-t
< 18 [= ////-z=64
o
i: 16- ‘ !;,
o 1
2 i
o) i
14 |- i
& .
LY 12- ‘34
o
E
o 10 o
8
Y
&
] 8
&
E]
Ll
L)
a 6 b=
<«
h = .98 _
4 - N = 256 4 =1
I0 = pc =4
(e.»T,) = (200,1600) ns
2 = p= 1 200 4
c= 4 2 1
0 ' | 1 |
50 100 200

Segment Time Unit, &

Figure 4.9.1 Effect of processor speed on performance
for a constant request rate.

216

for { >>p, but more busy line collisions and busy module collisions occur
for a decrease in p (for constant request rate). Hence the throughput is
decreased as p decreases (r decreases) for f >>p. For the constant
IO assumption, doubling T halves s. Hence sp is constant as r changes.
Obviously, a change in r corresponds to physical changes in the

processor design.

Consider the second case in which Io is not fixed. Assume that N,
P, and (OO,TO) are fixed but T varies. Note that s will still vary
inversely with T and therefore some processor changes are required. 1In
this case, an 1increase in processor speed increases the degree of
pipelining, s, and the rate of requesting cache memory. Figure 4.9.2
illustrates the example for N=256, p=4, h=0.98 and (eq,Ty)=(200,1600)ns.
In general, an increase in the processor speed increases the throughput.
Note that an increase in processor speed increases the cache memory
bandwidth because the cache request rate is increased. However, this
bandwidth increase is faster for larger { Dbecause of fewer multiple
access line collisions. Hence throughput improvement is relatively

higher for larger { as the processor speed increases.

In the third case, it is assumed that Io, N, s, p, ¢ and T are all
fixed. Decreasing T then simply corresponds to faster clocking of the
processor. Furthermore, decreasing +t requires a proportional decrease
in (ey,Ty) so that (e,T) is fixed. For example, let N=256, p=4, h=0.98
and (c,T)=(1,8). Cu is a constant for a given memory configuration as

processor and memory speeds change. Figure 4.9.3 shows the effect of

processor and memory speed on the throughput for various memory

TR . RN i, o

I —r—e-eary

217

ol Gl Py

v e P R Y

1 70
- h = .98
f' \oo N = 256 i
. ns .‘.
Q 3
- Q M
1 « ;
! ~
L R : Ji
a 50 P ‘
i g 3:
ey
- -]
2 4}
: iy
] 2
®
2 30
- =1
: o
' g .
=t
- S 20 f 4 = 256
. < L =6
4L =16
3 4=
5 10 4
1- z = 1
0 1 | {
T 50 100 200

Segment Time Unit,r (nsec)

Figure 4.9.2 Effect of processor speed on throughout
for varying request rate.

DI pumy ey gy et

218

80
h = .98
p=é
N = 256
70 |- < (e,T) = (1,8)
60 |=
50 -

40 -

Absolute Throughput, pCu/, (Instr./sec. 106)

\.;_-' e
30 |-
p 20 |
=4
10 - !
L =1
0 | 1 i

50 100 200

Segment Time Unit, r

T T G 5 e o WYY ¢

Figure 4.9.3 Effect of processor and memories speed
on throughout.

SV

219

configurations. In all configurations, an increase in processor speed
increases the throughput proportionally. In this case, a change in the
processor speed requires a similar change in memory speed for all levels

of memory hierarchy.

4.10 Effect of Miss Penalties on Performance

The effects of cache access conflicts on performance for various
parameters with a given hit ratio have been discussed in the previous
sections. We have also discussed the effect of access conflict due to
block transfer operation on system performance. In this section, the
effect of miss penalties on performance is discussed. To highlight the
effect of miss penalties on performance, the cache access conflict should
be reduced to a minimal level. Therefore, only the case of £ >>p is
considered here. Note that the c¢ache memory cycle, c, has an

insignificant effect on performance for both models in this region.

For £ >> p, (1-?1)% Py ~1. Hence, Cu1/{1+(1=h)T"] for both model
A and model B. The performance then depends on the product of (1-h) and
T" as shown in figure 4.10.1. As an illustration, consider the case of
(1-h)=0.1 and T=32, which results in a performance of Cu=0.54. Note that
a constant T may be held as (1-h) varies by varying the cache capacities
or the set sizes. Therefore doubling (1-h), in effect, requires T to be
halved in order to keep constant performance for £ >> p. Figure 4.10.1

shows that Cu=0.7 for (1=h)=0.1 and T=16 and for (1-h)=0.05 and T=32.

However, if T is primarily determined by main memory cycle, then halving

L =N =256 }
8]
A 3
S ar ;
o
]
od
4 6 |~
3 N
Li = T =8
: 5 5
=
(&
A T =16
a8 T = 24
T =32
.2 =3
lh—
0 I | ! | I I NS R B |

.00 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

Miss Ratio, (l-h)

Figure 4.10.1 Effect of (1-h) on Cu for f=N=256.

\

e M Al 1t B A B A M Sl F RPN

Y T

SR SECHVINE SO

221

T may generally cost more than halving (1-h) because the size of main

memory 1s usually much larger than that of cache memory.

Various (1-h) may also be obtained by varying the block sizes as
discussed in section 4.2. In general, the block transfer time, T, may be
expressed as a linear function of the block size. Let Mc and Bs
represent the main memory cycle and the block size respectively. The
block transfer time, T, can be expressed approximately as T:Mc + kBs’
where k is a constant which specifies the main memory bandwidth. As an
example of selecting the block size for a 1 K cache capacity, consider
figure 4.2.2, which shows miss ratios of €.060, 0.045, 0.043, 0.049 and
0.058 for the block sizes of 2, 4, 8, 16 and 32 respectively. If Mc, K
and s are assumed to be 5, 1 and 4 respectively, then miss penalties,
(1-h)T", of 0.120, 0.135, 0.172, 0.294 and 0.580 result for block sizes
of 2, 4, 8, 16 and 32, respectively. Therefore, a smallest block size of
2, instead of the block size correaponding to the minimum value of miss
ratio, gives the highest performance in this case. Clearly, small block
sizes are preferred as the constant, k, increases. For large Mc and
small k, the effect of block size on performance is less significant if

(1=h) is also small.

For a given cost, optimal memory hierarchies may be obtained by
properly choosing (1-h) and T. Chow [64] studied the optimization of
storage hierarchies based on the assumptions that the miss ratio function
and the device technology cost function are representable by power
functions. However, our experiments show that the shared cache miss

ratio function, i.e., figure U4.2.1, cannot be fitted by a power function.

e 5 7oy 7

e Sk o ot

o s b

222

Welch [65] did a similar study by only assuming the cost function to
be a power function. Welch’s model is interesting here since as with our
model he allows the hit ratio to be specified arbitrarily. For our

two-level memory hierarchy, Welch’s memory balance equation becomes

(1-m)T _ B
Tave S

where (1-h)T" is the cache miss penalty, T is the average access time

ave
of system, S is the total cost of all memory levels and B is the cost of
main memory. Note that only one of the two parameters, h and T", can be
varied at a time. Therefore, for fixed h, the main memory should be
speeded up if the ratio of main memory cost to system cost is larger than
the ratio of main memory delay to system delay. Equivalently, the main
memory shoud be‘ slowed down if the main memory results in a higher
proportion of system cost than its proportion of system delay.
Similarly, for fixed main memory speed, i.e. fixed T" in Welch’s model,
more money should be invested in cache to enhance h if the main memory
results in a higher proportion of system cost than its proportion of
system delay. On the other hand, the hit ratio should be reduced if the
main memory absorbs a smaller proportion of system cost than its
proportion of system delay. Hence, Welch’s _result may be helpful to

determine the tradeoffs between h and T if the main memory size is known

for our models.

However, his model does not consider the relationship between T" and

¢. It is not necessary to invest money in main memory to speed up T", T"

can be reduced by spending money in cache to speed up c¢. Note also that

AT~ AR LA e

i o s g LS Y Y. e S Y

e VA i = . e\ KM b e A B K

FUETRII-HERRIE P P

223

the hit ratio function is only a function of the cache capacity in his
model. However, various hit ratios may be obtained by varying the block

sizes and the set sizes for a given cache capacity.

Therefore, care must be taken in applying Welch’s result directly to
our models. For a required level of performance, the tradeoffs between h
and T" are determined by the system cost. Once again, knowledge about
the cost variances for different cache capacities, main memory

capacities, device technologies, block sizes and set sizes are needed.

In summary, for £>> p, the performance is only sensitive to the
cache miss penalty, (1-h)T", for both model A and model B. However, the
tradeoffs between h and T" involve many cost functions. In this region,
the shared-cache system may perform better than the private-cache system

if shared cache results in a smaller miss ratio.

4.11 Load Through versus Nonload-Through

In general, there are three ways to handle a cache miss on read: (1)
load through, (2) nonload-through with processors resubmitting the same
request every cycle during the ©block transfer time, and (3)
nonload-through with processors not making any request during the block
transfer time. Nonload-through was assumed for both the analytic models
and simulation experiments discussed before. Also, the request rate was

assumed to be one for all models and experiments and blocked requests

were handled by resubmitting them as new requests in the analytical

R e o e R

L+ e b bt it Pkl

e At 3 A oAl s LA

e A e R A A8

R S O O O O
a3

224

models (the same requests are resubmitted in the simultaion experiments)
one instruction cycle later until they are satisfied. Therefore, case 2
mentioned above has been simulated and modeled. The analytic models
developed in chapter 3 can easily be extended to case 3 by using lemma
3.4.1 and theorem 3.4.2 to modify the request rate. If the load through
capability is provided, processors do not have to resubmit a blocked
request due to cache miss since it is satisfied when the miss is
accepted, In this case, only those blocked requests caused by cache
access conflicts have to be resubmitted, therefore, the processor request
rate is less than one and the multiple access line collisions are
reduced. The miss penalty may also be reduced for load through because
the processor walting time for obtaining miss data is usually less than
the block transfer time. In this section, the effects of load through on
performance will be discussed based on model A. This discussion can be

easily extended for model B with load through.

Let W denote the processor waiting time, measured in STUs, for
obtaining the miss data after a cache miss occurs. Usually, this waiting
time is approximately equal to the main memory cycle. By an argument
similar to that used in the proof of theorem 3.4.2, it is obvious that
each request will extend to 1/P, requests due to cache access conflicts
and each cache miss causes no request for FW/s] instruction cycles.

Therefore, the actual request rate seen by the shared cache for model A

with load through is given as

T S T T T T T T et tr e

e =Sl

225

1/PA

R, ¥ (l-h)f-‘ﬂ '

X =

Assume that the block transfer time, T, is not affected by the load
through. Then, the probability of acceptance, PA, is evaluated as before
except that the probability of a request being rejected due to multiple
access line collision, P,, is given by lemma 3.4.1, i.e. 1 - [1 - (1-a /A
)?] L/ p. instead of theorem 3.2.1.1, i.e., 1 = [1 - (1 - 1/2)P}e/p.
Thus P, can be expressed in terms of P, by substituting for @ the
expression given above. Using this P, in the equation for P;, we have an
equation in which P, is the only unknown. This equation can be

numerically solved using standard iterative techniques. A suitable

initial value for PA is obtained by setting @ =1. The performance, CPU

utilization is then obtained as

1

ou }T + (1-h)[l:.]

A
Figure 4.11.1 illustrates the performance difference between 1load
through and nonload-through for a fixed processor waiting time, W=4. 1In
this case, different values of T can be explained as the result due to
the variations in main memory bandwidth or block size if fixed W implies
a fixed main memory cycle. It can be seen that 1load through performs
significantly better than nonload-through, especially for small h and

large T. Figure U4.11.2 shows the performance variations for load through

CPU Utilization, Cu

1.0

226

Nonload-Through
e==== Load Through

20 =0

Yo

.t 1 & - .t 1 1 1 1

YT T S Y VR A PO IOP I Y T G eI

.50 .55 .60 .65 .70 .75 .80 .85 .90 .95 1.0

Hit Ratio, h i

Figure 4.11.1 Performance comparison between load
through and nonload-through for a fixed W=4

T e sty s 8e e e

CPU Utilization, Cu

>~ Nonload-Through
\ \\V T 7" Load Through with Constant W
\ s Load Through with Constant B
.7 i—\ \. SN 8
.6
.5
N
.3
1 i]] 1] L L

8 12 16 20 24 28 32 36 40

Block Transfer Time, T=W + kBs

Figure 4.11.2 Performance comparison between load
through and nonload-through for various W's

]
and Bs 8.

R ety

228

due to various waiting times (W curves) for a given hit ratio, h=0.8.
Clearly, the larger the difference between W and T, the larger the

performance improvement from load through.

As stated in section 4.10, the block transfer time, T, can usually
be expressed as a linear combination of main memory cycle, Mc, and bloeck
size, By, 1.e. T=M, + kBy. Since the processor waiting time, W, for
cache mias is usually approximately M,, variations in M, will cause both
T and W to change simultaneously. If W=M, and k=1, then the difference
between T and W is the block size. In this case, load through performs
significantly better than nonload through for large block sizes. The
Bs curves in figure U4.11.2 illustrate this effect. The B, curves are

constructed by selecting T=33+w points on each W curve and connecting

points over all W curves with constant Bs‘

In summary, load through performs significantly Dbetter than
nonload-through for small h and a large difference between W and T. Note
that load through reduces the waiting time required to obtain the data
which cause misses. In order to access the next data, the processor may
still have to wait until the block transfer operation is completed. This
situation is due to program 1localities which may cause the next data
accessed to be in the same block as the currently referenced data. Since
the addresses of the requests are assumed tc be independent and random,

this effect has not been modeled. However, this effect is reduced when

the difference between W and T is small.

-

229

4.12 Comparisons Between Shared Cache and Private Cache

The performance differences for various parameters have been
discussed in the previous sections for shared-cache systems. In this
section, performance comparisons between shared cache (model A) and
private cache for several different organizations are discussed. The
possible overhead to handle the multicopy of data problem for private
cache is not considered here. In figure 4.2.2, miss ratios of 0.015 and
0.03 are shown for shared cache with write through and private cache with
write back respectively for a cache capacity of 2048, block size=8, set
size=8, and spz4. These miss ratios are used as given parameters to
investigate the performance difference between shared cache (model A) and
private cache for various system organizations. Let (1-hs) and (1-hp)
denote the miss ratios for shared cache and private cache, respectively.
Also let £ denote either the number of lines in cache memory for shared

cache or the number of lines in main memory for private cache sysatems.

For the first case, system organizations of multiprocessors with
four nonpipelined processors, i.e., (s,p) = (1,4), for shared cache and
private cache are illustrated in figure 4.12.1(a) and figure 4.12.1(db),
respectively. The performance prediction for private cache can be
obtained by using theorems 3.4.1, 3.4.2, and 3.4.3. The analytic

equations to predict the performance for shared cache are given as

l(l-Pl)

L7 WP PT" (1-B,) (1-h)

.9

(b))

Figure 4.12.1 Multiprocessor systems with nonpipelined
processors for (a) shared cache and (b)
private cache.

230

St Bt Sid et Bied Qo) D ONN A DS

[2]
s

o K s B S

- ™

[

231

1

1 "n 3
= + (1-h)T

P s

A

Cu =

where T" is the block transfer time relative to the processor cycle.

Since processors make one cache memory request every instruction (or
processor) cycle and the cache c¢ycle is assumed to be less than one
instruction cycle, the probability of acceptance, PA’ given above 1is
obtained from Appendix A for c=1 and T is replaced by T". Figure 4.12.2
shows the performance comparison between shared cache and private cache
for this case. Note that the solid line curves are the analytic results
for shared cache with various £ and the dotted 1line curve is the
analytical result for private cache with £ =4, The topmost solid line

curve is the absolute upper bound, i.e., for P, =1, performance for shared

A
cache. However, for private cache with ¢ =4, the main memory access
interference is negligible, 1i.e. PAﬁsl, in this example. Therefore, the
upper bound for shared cache 1is higher than that for private cache
because (1-h,) is smaller than (1-h,). Although the performance of
shared cache 1is much worse than that of private cache for £ =U, shared
cache may perform better than private cache, especially for large T, if a

sufficiently large £ 1is used for shared cache, For example, shared

cache with £ =16 performs better than private cache with £ =4 for T" 8§,

For the second case, a pipelined processor with four segments is
considered. Figures 4.12.3(a) and (b) show the system organizations for

shared cache and private cache, respectively. Note that for p=1, no

232

1.0 '
Shared (I-h)s = ,015 ;
Private (1-h)p

=
Q
g
o
o
&
]
N
a
H) L =8
- 7 b=
.
(]
g 6 |-
L =4
¥
s | | 1 | 1 1 :
2 3 4 5 6 7 8

Block Transfer Time, T" (Processor Cycles)

-‘ -

Figure 4.12.,2 Performance comparison between shared cache
and private cache for nonpipelined multiprocessor
systems.

s e e

[e [STUENY

o 3

233

1 L (::) i

(a)

r »‘ e

]

1 |

|

' ?
(b)

Figure 4.12.3 Single pipelined processor systems for
. (a) shared cache and (b) private cache.

234

crossbar is needed for shared cache systems. For private cache systems,
there are four cache modules, each associated with one process, connected
through a time~multiplexed bus to the processor and there is a crossbar
switch between the cache modules and the main memory modules. For shared
cache, the analytic equations used to predict performance can be obtained
by combining theorem 4.3.3 and a proper equation in Appendix A for a
specific c¢. However, for private cache, the performance can be predicted

by a direct extension of section 3.4.

In the derivation of theorem 3.4.1, it was shown that the
probability of acceptance for a single resource requested by a pipelined
processor is 1/[@(T-1)+1], where o and T are the request rate and
resource <cysle respectively. Briggs [42] and Emer [60] have derived
similar results. This result is then the probability of acceptance of a
main memory request for the private cache shown in figure 4.12.3(b). The
resource cycle, T, is the block transfer time in this case. However,
the request rate o« should be the actual request rate seen by the cache.
This rate can be obtained by applying theorem 4.3.2. Hence the analytic
equations for private cache are the following two equations‘together with

the CPU utilization equation obtained from theorem 4.3.3:

Y —
AM a(T-1)+1

1

L
T B+ (T DBy

235

1

and C =
u

e S

1+(1-h) [;1— -14T"]
AM

TSI

; Figure 4.12.4 illustrates the performance comparison between shared
cache and private cache for { =N. Note that the cache cycle time, ¢, for

private cache is not explicitly shown because it does not pose any

IR~ AR > MR T

{ limitation on performance as long as the cache cycle meets the deadline

required by the processor. Again, the topmost line shows the absolute
upper bound, 1i.e. P,=1, performance for shared cache. As can be seen,
shared cache always performs better than private cache for ec=1. For
g large 4 , a significant improvement in performance results for shared
i . cache, especially for large T. A performance comparison between shared
i cache and private cache for a fixed £ , i.e. 4, is shown in figure
§ . 4.12.5. Note that for shared cache and a given ¢ , the performance for a
system with cache c¢ycle time k is asymptotically bounded by the

B performance for the system with cache c¢ycle time k-1 and N= 2 as N

PR

approaches infinity. This asymptotic behavior of increasing N can be

~

seen by examining the equations listed in Appendix A. Figure U4.12.5

=

shows that shared cache with c¢=2 and private cache may result in

comparable performance if a large N is feasible for shared cache. 1

As a result of improvements in fabrication technology, many LSI

chips, such as microprocessors, now consist of multiple complex

v sy =

1 subsystems. However, one of the main cost factors and fabrication

difficulties is pin count. For the third case considered below, it |is

236

1.0
(1-1:1)s = 015
Shared (1-h) = .03
p
= === Private
P = 1’ 8 = 4
L =N
.9
o c=1, £=16
3] c=2, =32
o c=1, £=8
o
e c=2, =16
E 8 c=l, Ii=4
- 2=4
8
c=2, 1=8
E]
(3]
7 .
cx2, L=4
6 L |] A il]
8 12 16 20 24 28 32

Block Transfer Time, T (STUs)

Figure 4.12.4 Performance comparison between shared cache {
and private cache for single pipelined processor 1
with g4=N and s=4. |

|

237

1.0
(1-h) = .015
Shared (a-hy, = -03
Private p=1,8=4

c=1l,N=4
c=2 ,N=32
c=2 ,N=16

CPU Utilization, Cu

c=2,N=8

c=2 ,N=4

.6 | 1 | | |]
8 12 16 20 24 28 32

Block Transfer Time, T (STUs)

- Figure 4.12.5 Performance comparison between shared cache
and private cache for single pipelined processor
with 4=4 and s=4.

238

assumed that a pipelined processor and its cache memory modules are
integrated in a single chip for both shared cache and private cache. In
order to reduce the number of pins, a time-multiplexed bus connected
between cache modules and main memory modules is used for both systems.
Figure 4.12.6(a) and figure 4.12.6(b) illustrate the system organizations
for shared cache and private. cache, respectively. Obviously, the
organization shown in figure 4,12.6(b) is a special case, i.e. £ =1, of
that shown in figure 4.12.3(b). The analytic equations used to predict
performance for the system shown 1in figure 4.12.3(b) can be directly
applied to predict the performance for the private cache system in this

case.

For the shared cache in this case, it is assumed that the 1line is
busy for the period starting from detecting a cache miss on this line
until the block transfer operation is complete. Therefore, the effective
block transfer time, denoted as T’ actually includes the waiting times
for both main memory request due to access conflict and block transfer
operation. The change of main memory request rate, due to main memory
bus contention, changes the effective Dblock transfer time. Thereby,
changes also occur in the probabilities of acceptance, PA and PaM for a
cache request and for a main memory request, respectively. The analytic
solution is not ¢trivial but can be found for a specific ¢. As an
illustration, consider c=1, the probabilities of acceptance for bdoth a
cache request and a main memory request are given as PA =z 4/[L+(1=h)T’]

and P = 1/[2(T=1)+1] respectively, where T ° is the actual (or

AM
effective) block transfer time and o is the actual main memory request

———cH
« v

239

L
a =2
f- Oq' ... O
O~ ~O
]
(a)

|
!
|

‘ (b)

5 . Flgure 4.12.6 Single pipelined processor with time-
multiplexed main memory bus for (a) shared
l‘ cache and (b) private cache.

240 -

rate. Note that T can be expressed as, (1/PAM -« 1)s + T or alternately

as, (T - 1)s + T. Hence PA= £ / { L+(1-h)[o(T=1)s + T]}. Note alsc

that the main memory request rate, o , is (1-h)PA because only an
accepted cache request which results in a miss can make a main memory
request. Then the solution of the following equations gives us the
probability of acceptance PA' These equations can be solved numerically
using well known algorithms. A suitable starting value for PA, useful in

iterative solution methods, is £2/[£ + T(1=h)].

P = L
A g4(1-h) [@(T~1)s+T]

a = .

1)1’AM

1
1+ PAM+((1'h)1’A
Using the value of PA and o from the above equations, we can obtain the

CPU utilization for cache cycle c¢=1 as follows.

1

1)
_P; +(1°h)[s]

Cu=

where T =a(T-1)s + T .

The corresponding PA chosen from Appendix A is used in the above

equations with T replaced by T for each c. Figure U4,12.7 and figure

—

-4

()

G IR s) Py i o

CPU Utilization, Cu

(1-h) = .015
Shared s
(1-b) = .03
TT= =T pPrivat
¢ p=1, 8 =4
£ =N
.9
c=1,4=16
c=1,4=8
c=2,4=16
.8
c=1,4=4
S=4
c=2,4=8
T -
c=2,4=4
6 1 |] | | L
8 12 16 20 24 28 32

Block Transfer Time, T (STUs)

Figure 4.12.7 Performance comparison between shared cache
and private cache for p=1l, s=4, =N and a single
time-myltiplexed main memory bus.

242

: 1.0

L

g (1-h) = .015

j Shared (l-h)p ~ .03

* N, ~-"~"-" Private p=b4, s =4
L =4

-]
Q
g
v .8
]
N
=
ol
ES]
=1
A
o
7 -
=2 ,N=4
.6 L 1 L L 1 1
8 12 16 20 24 28 32

Block Transfer Time, T (STUs)

Figure 4.12.8 Performance comparison between shared
cache and private cache for p=1, s=4, f=4 and
a single time-multiplexed main memory bus.

B e Lo

243

4.12.8 1illustrate the performance comparisons between shared cache and
private cache, both with shared main memory bus, for £ = Nand £ = 4
respectively. As can be seen from figures 4,12.4, 4,12.5, 4.12.7 and
4.12.8, for private cache, the performance degradation due to the shared
main memory bus is significant when T is large. However, for shared
cache this performance degradation is less significant because (1-hs) is

small.

In general, shared cache may perform better than private cache 1if
(1-h,) is smaller then (1-hp) and £ is sufficiently large. Shared cache
is especially suitable for single pipelined processors, as in the second
and the third cases discussed in this section, because high performance

can easily be‘obtained and no c¢rosshar is required.

CHAPTER 5

CONCLUSIONS

5.1 Summary of Results

This research develops a simple and flexible system organization for
parallel-pipelined processors with a shared two-level memory hierarchy
and investigates the effect of hit ratio on system performance for
various workloads and cache component parameters as well as the effect of
cache memory access interference on system performance for a variety of
cache memory configurations, cycle characteristics, and processor speeds.
The multicopy of data problems in conventional multiprocessors with
private caches are totally eliminated by the architectural approach of
sharing the caches. The shared cache hit ratio function has been
investigated for a range of component parameters and several combinations
of four real program traces and two operating environments, that is
Independent Instruction-stream, Independent Data-stream (IIID) and Shared
Instruction-stream, Independent QData-stream (SIID) were used for
experimental evaluation by means of simulation. The shared-cache systems
have been studied for two kinds of organizations, namely shared cache
with an implicit lookup table and shared cache with explicit 1lookup

tables. For each shared cache organization, the effect of cache access

interference on system performance has been investigated for three cache

LR gETepy =yt~

[T

cycle times c=1, 2, and 3. The complexity of the Markov state diagram
grows exponentially with e¢. So far, we do not have a general solution of

performance for arbitrary c.

In chapter two, the L-M memory organization was reviewed and cache
memory management strategies were discussed. A set associative mapping
mechanism with a modified LRU replacement algorithm was assumed for
shared-cache systems. The write-through with buffering updating scheme
and the no-write allocation strategy were used in a shared-cache
multiple-stream system. However, a flagged register swap algorithm and
the write allocation strategy were used for multiprocessor systems with
private cache memories. Furthermore, a shared-cache memory interleaved

by sets was introduced.

In chapter three, we developed analytical models for both shared
cache with an impliecit lookup table and shared cache with explicit lookup
tables. In addition, an analytic model used to evaluate the main memory
interference for a multiprocessor system with private cache memories was
also developed. These models were oriented toward deriving the
probability or.acceptance, P,(c,Typ), of a request. The performance

/
measurement, CPU utilization, was obtained for each model based

on pA(c,T,p). The hit ratio was left ﬁnevaluated and assumed to be a
specified parameter in developing the analytical models. Since a general
expression for PA(c,T,p) is not known for arbitrary cycle time, ¢, we

have obtained upper and lower bounds on PA(c,T,p) for the impliecit lookup

table model, but were unable to do so for the explicit 1lookup table

model.

246

In chapter four, simulation experiments have been used ¢to

vt daiar s x

R R A

(b g

we

investigate the effect of various workloads and component parameters on
hit ratio and to validate the analytic models. We demonstrated that the
simulation results were not significantly different from the analytic
predictions for reasonably high performance systems. This justifies the
assumption that the discarding of rejected requests, for analytical
purposes, does not necessitate a significant deviation of the analytic
model from reality for reasonably high performance systems. We also
demonstrated that the hit ratio deviations due to cache memory
interference are insignificant. This justifies the assumption that the

hit ratio is coamstant with respect to changes in access conflict.

Experiments showed that shared cache is more sensitive to set sizes'
than private cache. We observed in our simulation experiments that
write-through is always superior to write-back. In most cases, dynamic
space sharing was better than fixed space allocation f&r the IIID
operating environment. The most significant improvements in miss ratio
by shared cache over private cache occurred for the SIID operating

environment.

We also investigated the effect of memory interference for a variety
of parameters on system performance. Since the analytic predictions for
shared cache with an implicit lookup table and explicit lookup tables are
almost the same for the range of parameters we studied, the discussion
was restricted only to shared cache with an implicit lookup table. We
found that for a very large number of cache memory modules, N, the effect

of cache cycle, ¢, 1is insignificant for shared cache with an implicit

PO

i
1
1
|
I
|
|

lookup tabls.

There 1s generally less payoff to increasing N for large 4 and
small p, and for small £ and large p. The most significant payoff to

increasing N occurs when £ is close to p.

We showed that systems result in very poor performance for L < DP.
For £ =p, the performance is sensitive to small variations in £, p, T,

and N. In order to obtain reasonable performance, £ >p is necessary.

The effect of cycle characteristics on performance is small when £
and N are sufficiently large. We have shown that for small £ and N, the

effect of cache cycle, ¢, is significant.

The processor speed is another important factor that determines the
system throughput. For both a higher request rate and a uniformly faster
processor/memory, i.e. fixed (¢,T), assumptions, an increase in the
processor speed increases the throughput. For a constant request rate
assumption, an increase in the processor speed decreases the throughput

slightly for large £ but increases the throughput for small .

We have shown, for sufficiently large £, that system performance is
critically dependent on the miss penalty, (1-h)T". One example shows
that maximum performance may not be produced for the block size which

corresponds to the minimum value of miss ratio.

A simple model has been developed for processors with 1load through
capability. We 1illustrated that 1load through is significantly better

than nonload-through for small h and a large difference between T and the

main memory cycle.

Performance comparisons between shared cache and private cache were
carried out for several organizations. We showed that shared cache with

write-through 1s especially suitable for single pipelined processor

sysiems.

In general, since shared space could be equally divided ;moung the
processes, shared cache under an effective management policy should yield
a hit ratio at least as high as that for private cache. However, it was
shown in section 4.3 that shared cache might result in a higher miss
ratio for an LRU replacement policy per set. More research on dynamic
space sharing and the interaction between streams is required to derive

an effective management policy for shared cache.

If shared cache gives a higher hit ratio than private cache, then
shared cache results in higher system performance for those
configurations that keep the access conflict at low levels. Note that
the overhead caused by handling the multicopy of data problem has not
been considered for private cache systems. The performance predictions

for private cache are thus optimistiec.

If both shared cache and private cache have the same cache
organization, then private cache is more expensive than shared cache
because a "store controller" and a "central directory" [16] have to be
provided in order to solve the multicopy of data problem. This cost
difference can be invested in shared cache to reduce access conflict and

enhance system performance. In addition to possible higher performance,

:-.‘. f.-.. :».-mu 4

g

249

shared cache systems have the following advantages over private cache

systems:

(1) no multicopy of data problem,
(2) interprocessor communication can be implemented in the cache,
and

(3) design is simpler.

5.2 Suggestions for Further Research

As mentioned before, in order to derive an effective management
policy for shared cache, more research on policies for management of
dynamic space sharing should be done. Shared-cache systems with separate
caches for instructions and data may be interesting. In practice, space
allocation for data and instructions in such computer systems may be

complex.

The performance evaluation of pipelined processors with both 1load
through and instruction prefetch capabilities is important. Both load
through and prefetch can be carried out simultaneously if the bandwidth
for load through is greater than one. In this case, not only the
read-miss instructions but also the sequential instructions following
those read-miss instructions will be loaded from main memory directly to

processors.

A possible extension of this thesis may be directed towards

developing a model for general memory hierarchies. It may be possible to

characterize the access time to a memory level in terms of the access
times to all the higher level memories. A hierarchical model would be
very useful because any later change of technology for some memory level

would require that only the model for that level be modified.

Finally, the effective buffer sizes for both write-through and
write-back should be investigated. Software developments, such as

microprogramming and resource allocation, for shared cache systems should

also be studied.

Gird Bd puemd Bomi fee) St gy OGN NN B

N g P ey pun geud o

251

APPENDIX A

A Summary for Shared Cache with An Implicit Lookup Table

Lq
A 4p + pq(e-1) + Tpq(l-h)

Lq
2. (¢, T) = (1, T), Py ®Tp + Tpq(l-h)

4gN
3. (e, T) = (2, D), Pa T ZpN + Npq(T+D) (1-h) + path

zN(l-Pl) (N+gh)
4. (e, T) = (3, T), P, = -

where & = (£42q4Tq-Thq-2hq)N> + (3qhi-h2q>+hq>+Thq®-ThZq?)N

zq + hlqz.

+ th
q = 1-(1-1/2)P, and

(1-p) = [1-(1-1/4)F14/p.

1

5. CPU Utilization,

Cu = 178, F (T

252

APPENDIX B

A Summary for Shared Cache with Explicit Lookup Tables

4q
l.m=1 = =
mEh “ah " Fan " Tp + pha(e-1) + pq(T-1)(1hy)

hthd

Lq
2. (6, M = (L, D, By =R = Pa(T-1) (1+h,)

AqN
3.0, D =2 Dy Fyp T Tnp + pa(T-1) (1hy) (N - q(m-L)h] + pah,s

N - 4q (m-l)ht1

fan T W+ qT-D (1) [N - q(m-Dh] + ab_¢
b e ¢ L4)
h
d
zN(l*Pl)(N+hq)
b, = (3, D B, = -
.. Ly,
Am A

(1-hd)(N - thd + loqhd)(N - thd + 2£qhd)

th(N + thd)

where A = IN(N + hdq) + q(T-l)(l-hd)Yle + thdt(N + hdq),
Yl - (N-mhdq +hdq), Y2 = (N - mhdq + Zhdq),

q= 1-(1-1/8)® and (1-p) = [1-(1-1/2)P1a/p.

* h : static hit ratio; hd : dynamic hit ratio. J*

APPENDIX B
(continued)

1
5. CPU Utilization, Cu = = "
h/PAh + (1-h) (1/PAm+T)

b A A A A M M LA . S 6@ e o o _ . N g O amns 5 -

254

REFERENCES

(1) Chen, T. C., "Parallelism, Pipelining, and Computer Efficiency",
Computer Design, pp. 365-372, January 1971.

(2) Bell, C. G., and Wulf, W. A., "C.mmp-A Multiminiprocessors," AFIPS

e T A W e who

(3) Davidson, E. S., "A Multiple Stream Microprocessor Prototype
Systems: AMP-1", The Tth Annual Symposium on Computer Architecture
pp. 9-16, May 1980.

(4) Flymm, M. J., "Very High-Speed Computing Systems", Proc. of the
IEEE, Vol. 54, No. 12, pp. 1901-1909, December 1966.

(5) Barnes, G. H., et al., "The ILLIAC IV Computer®, IEEE Trans.
cmeut.' VO].- C-17, NO- 8, ppo 7‘.6-757, August 19680

(6) Batcher, K. E., "STARAN Parallel Proessor System Hardware," AFIPS
Pl‘oc- EE, VO].. '43, ppo uos-u10, 197"0

(7) Crane, B. A., et al., "PEPE Computer Architecture®, IEEE COMPCON, : i
ppo 57-60, 19720 . 4

(8) Anderson, D. W., et al.,, "The IBM System/360 Model 91: Machine
Philosophy and Instruction Handling", IBM J. of Res. and Dev,,
pp. 8=24, January 1967.

e 1 P G P AW

(9) Amdahl 470 V/6 Machine Reference Manual, Amdahl Corporation,
Sunnyvale, Calif., 1976.

(10) Hintz, R. G., and Tate, D. P., "Control Data STAR-100 Processor
Design", Proc. COMPCON Fall 72, pp. 1-4, September 1972.

(11) Watson, W. J., "The TI ASC-A Highly Modular and Flexible Computer
Architecture”, AFIPS Proc. FJCC, Vol. 41, Part I, pp. 221-228,
1972,

(12) Russell, R. M., "The CRAY-1 Computer System", Commun. ACM,
Vol. 21’ No. 1, pP. 63.72, Jmu‘ry 19780

- A D - s 1t S A S i I WV e -

ol St ey Gy AR R AR e

* ed] romnd

P

g =

S ey ey gy ey i

(13)

(14)

(15)

(16)

an

(18)

(19)

(20)

(21)

(22)

(23)

255

Shar, L. E., and Davidson, E. S., "A Multiminiprocessor System
Implemented Through Pipelining", Computer, Vol. 7, No. 2, pp. 42-51,
February 1974.

Larson, A. G., and Davidson, E. S., "Cost-Effective Design of
Special-«Purpose Processor: A Fast Fourier Transform Case Study",
Proc. 11th Annual Allerton Conf. on (Circuit and System Theory,
pp. 547-557, October 1973.

Kaminsky, W. J., and Davidson, E. S., "Developing A Multiple -
Instruction -« Stream Single-Chip Processor ", Computer, pp. 66-76,
December 1979.

Tang, C. K., "Cache System Design in the Tightly Coupled
Multiprocessor System", AFIPS Proc. NCC, Vol. 45, pp. TW9-753,
1976.

Censier, L. M., and Feautrier, P., "A New Solution to Coherence
Problems in Multicache Systems®, IEEE Trans. Comput., Vol. C=-27,
No. 12, pp. 1112-1118, December 1978.

Davidson, E. S., "Effective Control for Pipelined Computers", Proc.

COMPCON Spring 75, pp. 181-184, February 1975.

Strecker, W. D., "An Analysis of the Instruction Execution Rate in
Certain Computer Structures®", Ph.D. Thesis, Carnegie-Mellon Univ.,
Pittsburgh, Pa., 1970.

Weller, D. L., and Davidson, E. S., "Optimal Searching Algorithms
for Parallel - Pipelined Computers", Spring-Verlag Lecture Notes,
No. 2”. Pp- 90'98, Ausust 19750

Smith, A. J., "Sequentiality and Prefetching in Data Base Systems",
ACM Trans. on Data Base Sys., pp. 223-2U7, September 1978.

Rau, B. R., and Rossmann, G. E., "The Effect of Instruction Fetch
Strategies upon the Performance of Pipelined Instruction Units®,
Fourth Annual Symposium on Computer Architecture, pp. 80-89, March
1977.

Mattson, R. L., et al,, "Evaluation Techniques for Storage
Hierarchies", IBM Syst. J., pp. 78-117, No. 2, 1970.

256

(24) Denning, P. J., "The Working Set Model for Program Behavior",

(25)

(26)

27

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

comuno ﬂ, Vol. 11’ No. 5, PP. 323-333, H‘y 19680

Gschwind, H. W., and McCluskey, E. J., Design of Digital
Computers, Springer - Verlag, 1975.

Foster, C. C., Content Addressable Parallel Processors, Van
Nostrand Reinhold, 1976.

Lamb, S., "An Add-In Recognition Memory for S-100 Bus Microcomputers
- Part 2: Structure and Specifications", Computer Design,
pp. 162-168, September 1978.

Belady, L. A., and Kuehner, C. J., "Dynamic Space - Sharing in
Computer Systems", Commun. ACM, Vol. 12, No. 5, pp. 282-288, May
1969.

Coffman, E. G., and Ryan, T. A., "A Study of Storage Partitioning
Using a Mathematical Model of Locality", Commun. ACM, Vol. 15,
No. 3, pp. 185-190, March 1972.

Juan Rodriguez-Rosell, "Empirical Working Set Behavior", Commun.
ACM, Vol. 16, No. 9, pp. 556-560, September 1973.

Hendrik Vantilborgh, "Working Set Dynamics®™, Modelling and
Performance Evaluation of Computer Systems, Edited by E. Gelenbe,
North - Holland Pub. Co., pp. 377-387, 1976.

Hellerman, H., Digital Computer System Principles, New York:
HcGPaw-ﬂill [pp . 228‘229 [} 1967 L]

Knuth, D. E., and Rao, G. S., "Activity in Interleaved Memory,"
IEEE Trans. Comput., Vol. C-24, No. 9, pp. 943-944, September 1975.

Burnett, G. J., and Coffman, E. G., "A Study of Interleaved
Memory®™, AFIPS Proc. SJCC, Vol. 36, pp. 467-474, 1970.

Burnett, G. J., and Coffman, E. G., "Analysis of Interleaved
Memory Systems Using Blockage Buffers", Commun. ACM, Vol. 18,
No. 2, ppo 91-95, F.bfwy 1975.

c-—

N

P Y T P 1T X e

T A

e A i TR i S B

B et atiad St o

Aty A - s e

m —— ——— ——— [
. . . . ’ . . ‘

(36)

(37

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

257

Skinner, C., and Asher, J., "Effect of Storage Contention on
PQPfOPmce", ﬂ S!St. J_o, VOl. 8’ NO. u, ppo 319-333, 1969.

Ravi, C. V., "On the Bandwidth and 1Interference in
Multiprocessors", IEEE Trans. Comput., Vol. C-21, pp. 899-901,
August 1972.)

Bhandarkar, D. P.y "Analysis of Memory Interference in
Multiprocessors®, IEEE Trans. Comput., Vol. C-24, pp.897-908,
September 1975.

Sastry, K. V., and Kain, R. Y., "On the Performance of Certain
Multiprocessor Computer Organizations™, IEEE Trans. Comput.,
VOl. C-Zu, ppo 1066’107“, NOV. 1975.

Baskett, F., and Smith, A., "Interference in Multiprocessor Computer
Systems with Interleaved Memory", Commun. ACM., Vol. 19, No. 6,
pp.327-334, June 1976. - =

Briggs, F. A., and Davidson, E. S., "Organization of Semiconductor
Memories for Parallel - Pipelined Processors", IEEE Trans. Comput.,
Vol. C-26, pp. 162-169, February 1977.

Briggs, F. A., "Memory Organizations and Their Effectiveness for
Multiprocessing Computers®", Coordinated Science Lab., Report
NO- R-768’ UniV. Of Illo, May 19770

Bloom, L., Cohen, M., and Porter, S., "Considerations in the Design
of a Computer with High Logic - to - Memory Speed Ratio", Proc.
Gigacycle Computing Systems, January 1962; AIEE Special Publ.,
S-136, pp. 53-63.

Liptay, J. 8., "Structural Aspects of the System/360 Model 85, Part
II: The Cache", IBM Syst. J., Vol. 7, pp. 15-21, 1968.

Strecker, W. D., "Cache Memories for PDP-11 Family Computers", The
3rd Annual Symposium on Computer Architecture, pp. 155-158, January
1976.

Kaplan, K. R., and Winder, R. 0., "Cache - Based Computer
Systems", Computer, pp. 30-36, March 1973.

258

(47) Meade, R, M., "On Memory System Design", AFIPS Proc. FJCC, Vol. 37,
pp. 33-43,1970.

(48) Sisson, S. S., and Flynn, M. J., " Addressing Patterns and Memory
Handling Algorithms"®, AFIPS Proc. FJCC, Vol. 33, Part 2,
pp. 957-967. 1968. R

(49) Smith, A. J., "A Comparative Study of Set Associative Memory -
Mapping Algorithms and Their Use for Cache and Main Memory", IEEE i
Trans. Software Eng., Vol. SE-4, No. 2, pp. 121-130, March 1978.

(50) Rao, G. S., "Performance Analysis of Cache Memories”, J. ACM,
Vol. 25, No. 3, pp. 378-395, July 1978.

(51) Gibson, D. H., "Considerations in Block - Oriented Systems Design",
AFIPS Proc. SJCC, Vol. 30, pp. 75-80, 1967.

(52) Conti, C. J., "Concepts for Buffer Storage", IEEE Comput. Group
Nm, Vol. 2, PP. 9-13, March 1969.

(53) Belady, L. A., "A Study of Replacement Algorithms for Virtual
Storage Computer", IBM Syst. J., Vol. 5, pp. 78-101, 1966.

(54) Belady, L. A., Nelson, R. A., and Shedler, G. S., "An anomaly in ‘1
the Space -~ Time Characteristics of Certain Programs Running in '
Paging Machines®, Commun. ACM, Vol. 12, No. 6, pp. 349-353, June
1969.

(55) Bell, J., et al., "™ An Investigation of Alternative Cache
Organizations”, IEEE Trans. Comput., Vol. C-23, No. 4, pp. 346-351,
April 1974,

(56) Smith, A. J., "Characterizing the Storage Process and Its Effect on
the Update of Main Memory by Write Through", Commun. ACM, Vol. 26,
No. 1, pp. 6=27, January 1979.

P T < ki YT S 4 AR e

(57) Pohm, A. V., et al., " The Cost and Performance Tradeoffs of
Buffered Memories", Proc. of the IEEE, Vol. 63, No. 8,
pp. 1129=1135, August 1975.

259

(58) Erhan Ginlar, Introduction to Stochastic Processes, Prentice - Hall,

Inc., 1975.

(59) Chang, D., et al., "On the Effective Bandwidth of Parallel
Memories", 1EEE Trans. Comput., Vol. C-26, No. 5, pp. 480-490, May

1977.

(60) Emer, J. S., "Shared Resources for Multiple Instruction Stream
Pipelined Processors", Coordinated Science Lab., Report No. R-838,

Univ, of Ill., July 1979.

(61) Birtwistle, G. M., et al., SIMULA Begin, Van Nostrand Reinhold,

Second Edition, 1979.

(62) Easton, M. C., and Fagin, R., "Cold-Start vs. Warm-Start Miss
Ratios", Commun. ACM, Vol. 21, No. 10, pp. 866-872, October 1978.

(63) Patel, J. H., Private Communication.

(64) Chow, C. K., "On Optimization of Storage Hierarchies", IBM J.
DQV., ppt 19"-203, May 197“0

(65) Welch, T. A., "Memory Hierarchy Configuration Analysis",
Trans. Comput., Vol. C-27, No. 5, pp. 4#08-417, May 1978.

Res.

IEEE

260

VITA

Chi-Chung Yeh was born in Taiwan, Republic of China, on June 12,
1950. He received a B. Eng. degree in Electronic Engineering from
Chung Yuan Christian College for Science and Engineering, Taiwan,

Republic of China, in 1972.

He received an M.S. degree in Electrical Engineering from
Northwestern University, Evanston, Illinois, in 1975 and an M.S. degree
in Computer Science from the University of Illinois at Urbana-Champaign,
in 1977.

From 1978 to 1980, he was a graduate assistant at the Coordinated

Science Laboratory of the University of Illinois at Urbana-Champaign.

e e e s e e e Lt e S e .

